Modeling the Evolution of Demand Forecasts with Application to Safety Stock Analysis in Production/Distribution Systems

David Heath and Peter Jackson

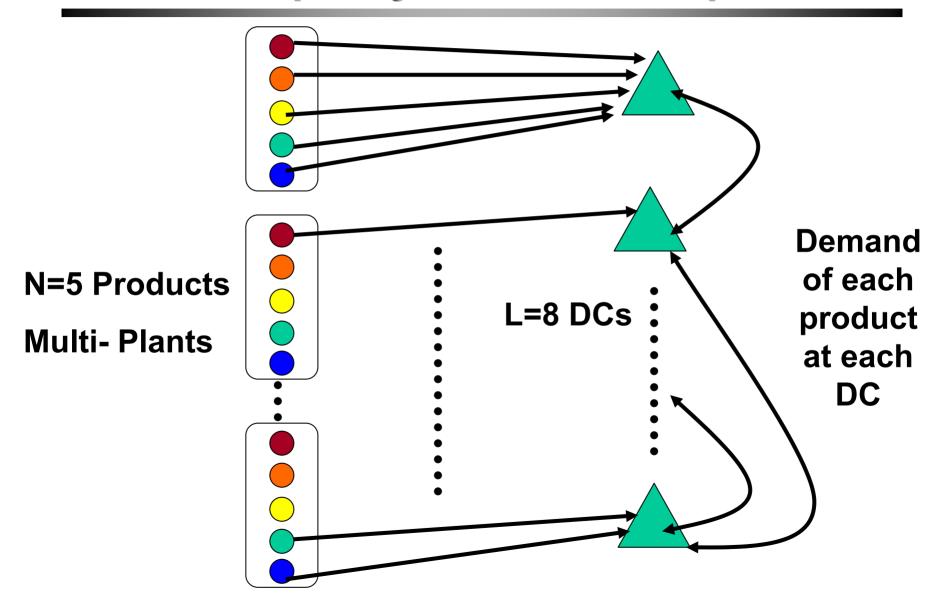
Presented by Kai Jiang

This summary presentation based on: Heath, D.C., and P.L. Jackson. "Modeling the Evolution of Demand Forecasts with Application to Safety Stock Analysis in Production/Distribution Systems." *IIE Transactions* 26, no. 3 (1994): 17-30.

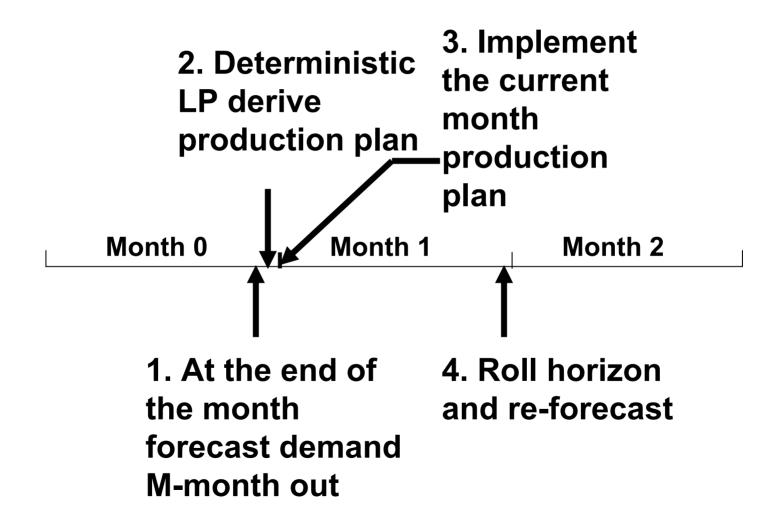
Overview

- Problem
- Methodology
- Key Results

Multi-product Multi-location Multi-period with Capacity and Trans-shipment



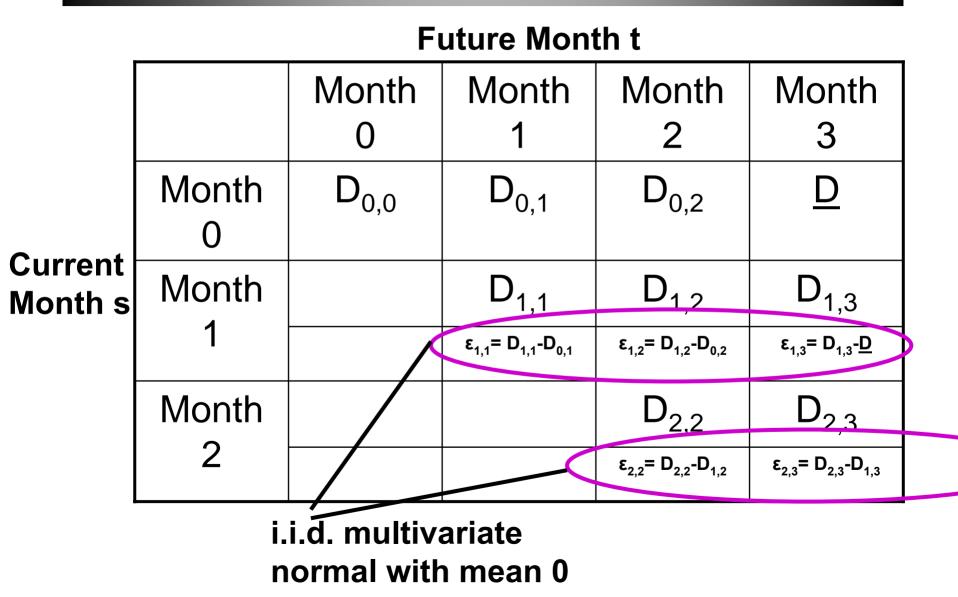
Planning Sequence of Events



Solving the Inventory Problem

- Find an economical safety stock factor for each product at each DC for each month
 - A DP approach difficult
 - A simulation approach
 - Use MMFE to simulate forecast
 - Use a similar LP to simulate decisions
 - Tally costs and service level for different safety stock factor

The Martingale Model of Forecast Evolution (Additive)



Justifying ε are i.i.d. multivariate normal with mean 0

$$\varepsilon_{s,t} = D_{s,t} - D_{s-1,t}$$
$$\varepsilon_s = (\varepsilon_{s,t})_{t=s}^{+\infty}$$

- Information set F_s grows with time s
- ε_s is uncorrelated with all ε_u for u ≤ s-1 and E[ε_s]=0
- ϵ_s is a stationary process
- ε_s is normal

Why is it called a Martingale Model?

If forecast is conditional expectation based on current information set F_s

$$\boldsymbol{D}_{s,t} = \boldsymbol{E}[\boldsymbol{D}_{t,t} \mid \boldsymbol{F}_{s}]$$

Then $E[D_{s,t} | F_0, ..., F_{s-1}]$ = $E[E[D_{t,t} | F_0, ..., F_s] | F_0, ..., F_{s-1}]$ = $E[D_{t,t} | F_0, ..., F_{s-1}]$ = $D_{s-1,t}$

Thus, $D_{s,t}$ is a martingale and

 $\mathcal{E}_{s,t} = E[D_{t,t} | F_s] - E[D_{t,t} | F_{s-1}] \text{ is uncorrelated with } F_{s-1}$ $E[\mathcal{E}_{s,t}] = 0$

Conditional Expectation as Best Mean-Square Predictor of D_{t,t}

Using the best Mean-square predictor definition of conditional probability

$$\boldsymbol{E}[(\boldsymbol{D}_{t,t} - \boldsymbol{D}_{u,t})\boldsymbol{w}] = \boldsymbol{E}[(\boldsymbol{D}_{t,t} - \boldsymbol{D}_{s,t})\boldsymbol{w}] = \boldsymbol{0}$$

 $\forall w \in r.v.observed at u$

Then

$$\boldsymbol{E}[(\boldsymbol{D}_{t,t}-\boldsymbol{D}_{u,t})\boldsymbol{w}]=\boldsymbol{E}[(\boldsymbol{D}_{s,t}-\boldsymbol{D}_{u,t})\boldsymbol{w}]=\boldsymbol{0}$$

Thus, true also under linear predictor

The Multiplicative Model

$$v_{s,t} = \log(D_{s,t}) - \log(D_{s-1,t})$$
$$R_{s,t} = \exp(v_{s,t}) = D_{s,t} / D_{s-1,t}$$

$$\boldsymbol{\nu}_{s} = (\boldsymbol{\nu}_{s,t})_{t=s}^{+\infty}$$

i.i.d. multivariate normal with mean of each coordinate being the negative of one half of its variance

Characterize the Simulation System

- The variance-covariance matrix Σ for ε_s (MN X MN) – estimated using past demand and forecast
- The initial state of the system (D_{0,0}, D_{0,1}, ..., D_{0,M}, <u>D</u>)

Why not Simulate the Time Series of Forecast Directly

 "Simulate the complicated forecast process based on past demand, competitors' prices, weather forecast etc. is no more credible than assuming the forecast process is MMFE and estimating the variance-covariance matrix"

Simulating the Forecast Evolution Using the Variance-covariance Matrix Σ

- Properties of Σ
 - Σ is symmetric and PSD
 - Σ = CC' = (UD^{1/2})(UD^{1/2})' where D is the diagonal matrix with eigenvalues sorted in decreasing order
- The standard multivariate normal representation: ε_s= CZ where Z is a standard normal random vector

Forecast Variability Resolving Over Time

- The 1st column of C captures the 1st order magnitude of ε_s
- The signs and values of entries in the 1st column of C reveals how forecast variability resolves over time and how they are correlated
 - e.g. $C_{0,1}$ = -.5511, $C_{0,41}$ = -.4343 → 61.7% variability resolved in month of sale, 38.3% variability resolved 1 month out
 - e.g. $C_{0,1}$ = .1616, $C_{0,41}$ = .3143, $C_{0,81}$ = -.0880, $C_{0,121}$ = -.2636 → 12%, 49%, 4%, 34%

The Experiment

- Traditional Forecast Method (2 month out)
 80 X 80 Σ from four years of past forecast and actual demand data
- Statistical Forecast Method (4 month out)

 (160 X 160) Σ from two years actual demand and simulated forecast
- Initial state forecast for the year of 1990-1991 fiscal year
- Cost and service metrics averaged over 10

 20 simulated years

The Results

- Safety stock factor can be reduced without sacrificing much fill rate, if using the Statistical Forecast Method → resulting in significant cost savings
- Reducing safety stock factor using the Traditional Forecast Method does not show much benefit
- More important to increase forecast accuracy than to increase capacity

Recap

- MMFE to model forecast evolution
- Simulate the system using MMFE
- Evaluate the performance of the two systems with two different forecast methods