"Centralized Ordering Policies in a Multi-Warehouse System with Lead Times and Random Demand"

A paper by Gary Eppen and Linus Schrage

Presentation by Tor Schoenmeyr

This is a summary presentation based on: Eppen, Gary, and Linus Schrage. "Centralized Ordering Policies in a Multi-Warehouse System with Lead times and Random Demand." TIMS Studies in the Management Sciences, Vol.

16: Multi-Level Production/Inventory Control Systems, Theory and Practice. Edited by Leroy B. Schwarz. 1981.

System and Problem Description

The Allocation Assumption
Policy 1: Order up to y every period
Policy 2: Order up to \boldsymbol{y} every \boldsymbol{m} periods

System Description and Assumptions

Total inventory in system: \boldsymbol{y}

Depot (no inventory)	Transportation
\vdots	lead time I

N warehouses (with inventories)

Demand
(random)

Supplier

lead time L

Costs to be minimized:

- Holding cost \boldsymbol{h} per unit in inventory
-Penalty cost \boldsymbol{p} per unit of unmet demand (placed in backlog)
-Fixed cost \boldsymbol{K} for every order placed

Decisions to be made every period:
-How much, if anything, should be ordered from the supplier
-How should we distribute the incoming orders at the Depot

Why have a Depot? (with no inventory)

Problem

- Separate warehouses have little purchasing power
- Demand fluctuates for the individual warehouse
- It is expensive/ impractical to build a depot
- (Demand can vary also in the aggregate)

Depot Benefit

- Exploit quantity discounts from the supplier
- Fluctuations in different warehouses even out, and you gain "statistical economies of scale"
- Depot need not to be a physical entity (the point is that goods are allocated after orders completed)
- (Maybe a depot with inventory can do even better)

Applicability of model

Good application: Steel for conglomerate

Long

Holding costs (expensive)

Order placed on "backlog" at some penalty

Questionable application:
Coca-Cola for 7-Eleven

Short

Cheap, not to say desirable (up to shelf capacity)

Customer walks (or buys a substitute)

System and Problem Description

The Allocation Assumption
Policy 1: Order up to y every period
Policy 2: Order up to \boldsymbol{y} every \boldsymbol{m} periods

Allocation Assumption

(for every period ordering, normal demand)

"Every period \boldsymbol{t}, we can
make an allocation (at the
depot) such that the
probability of running out at
each warehouse is the same
at period $\boldsymbol{t} \boldsymbol{+}$ "

"Every period, we can find a constant v, such that the total inventory at and in transit to the \boldsymbol{i} th warehouse is:
$(l+1) \mu_{i}+v \sigma_{i} \sqrt{l+1}$
Transportation

Example when Allocation Assumption holds (identical warehouses)

Example when Allocation Assumption is violated (identical warehouses)

The Allocation Assumption holds for high $\boldsymbol{\mu} / \boldsymbol{\sigma}$ and low \boldsymbol{N}

Theoretical Result

Eppen and Schrage derive a good theoretical approximation formula for the probability of A.A. being true.

The paper does not explain how "negative demand" should be interpreted. This happens frequently in the lower left corner where my experiments gave different results than those of the paper

Probability of A.A. being true according to experiment presented in paper (my experiment in parenthesis) Percent

$\begin{array}{r} \mu / \sigma \\ N \end{array}$	$1 / 2$	1	3/2	2	5/2
2	$\begin{gathered} 32.6 \\ (35.9) \end{gathered}$	$\begin{gathered} 66.3 \\ (66.3) \end{gathered}$	$\begin{gathered} 85.8 \\ (86.5) \end{gathered}$	$\begin{gathered} 95.2 \\ (95.5) \end{gathered}$	$\begin{gathered} 98.8 \\ (98.8) \end{gathered}$
3	$\begin{gathered} 20.1 \\ (19.8) \end{gathered}$	$\begin{gathered} 54.7 \\ (53.2) \end{gathered}$	$\begin{gathered} \hline 79.8 \\ (79.0) \end{gathered}$	$\begin{gathered} 93.0 \\ (93.5) \end{gathered}$	$\begin{gathered} 98.1 \\ (98.2) \end{gathered}$
4	$\begin{gathered} 11.4 \\ (10.0) \\ \hline \end{gathered}$	$\begin{gathered} 43.1 \\ (41.0) \\ \hline \end{gathered}$	$\begin{gathered} 73.3 \\ (72.0) \\ \hline \end{gathered}$	$\begin{gathered} 90.1 \\ (90.5) \\ \hline \end{gathered}$	$\begin{gathered} 97.3 \\ (97.4) \\ \hline \end{gathered}$
5	$\begin{gathered} 7.6 \\ (4.9) \end{gathered}$	$\begin{gathered} 36.5 \\ (30.6) \end{gathered}$	$\begin{gathered} 68.6 \\ (65.8) \end{gathered}$	$\begin{gathered} 88.3 \\ (88.0) \end{gathered}$	$\begin{gathered} 96.5 \\ (96.9) \end{gathered}$
6	$\begin{gathered} 4.6 \\ (2.5) \end{gathered}$	$\begin{gathered} 29.9 \\ (22.3) \end{gathered}$	$\begin{gathered} 63.2 \\ (60.7) \end{gathered}$	$\begin{gathered} 86.4 \\ (85.2) \end{gathered}$	$\begin{gathered} 96.1 \\ (95.8) \end{gathered}$
7	$\begin{gathered} 2.8 \\ (1.2) \end{gathered}$	$\begin{gathered} 24.5 \\ (15.8) \end{gathered}$	$\begin{gathered} 59.1 \\ (53.5) \end{gathered}$	$\begin{gathered} 84.1 \\ (83.2) \end{gathered}$	$\begin{gathered} 95.5 \\ (95.5) \end{gathered}$
8	$\begin{gathered} \hline 1.6 \\ (0.5) \end{gathered}$	$\begin{gathered} 20.4 \\ (11.0) \end{gathered}$	$\begin{gathered} 54.3 \\ (46.6) \end{gathered}$	$\begin{gathered} 82.0 \\ (80.5) \end{gathered}$	$\begin{gathered} 94.6 \\ (95.3) \end{gathered}$

System and Problem Description
The Allocation Assumption
Policy 1: Order up to y every period
Policy 2: Order up to \boldsymbol{y} every \boldsymbol{m} periods

Policy 1: Order Every Period (fixed ordering costs $K=0$)

Problem:

Eppen and Schrage find an analytical expression for the inventory at each warehouse

We know how much is ordered every period (as a function of \boldsymbol{y})

We know how the incoming goods are split up at the Depot

We know the (random function for) demand at each warehouse

Eppen and Schrage derive this expression for the inventory \boldsymbol{S} at each warehouse (simplified form for the case of identical warehouses):

$$
S_{j}=(l+1) \mu+\frac{y}{N}-(l+1) \mu-\frac{\sum_{t=1}^{L} \sum_{i=1}^{N} e_{i t}}{N}-\sum_{t=L+1}^{L+l} e_{j t}
$$

The problem is now equivalent to the newsboy problem, and can be solved analytically

Newsboy problem

"The newsboy buys i newspapers, at a cost c each. He sells what is demanded \boldsymbol{d} (random variable), or all he has got \boldsymbol{i}, whichever is less, at a price r. Any surplus is lost."

Deterministic inventory	Random inventory	Cost of surplus (per unit)	Cost of shortage (per unit)

$$
\begin{array}{cc}
\mathrm{i} & -\mathrm{d} \\
(l+1) \mu+\frac{y}{N}-(l+1) \mu-\frac{\sum_{t=1}^{L} \sum_{i=1}^{N} e_{i t}}{N}-\sum_{t=L+1}^{L+l} e_{j t} & \mathrm{~h}
\end{array}
$$

System and Problem Description
The Allocation Assumption
Policy 1: Order up to \boldsymbol{y} every period
Policy 2: Order up to \boldsymbol{y} every \boldsymbol{m} periods

Policy 2: Order Up to level \boldsymbol{y} every m periods

+ We can select \boldsymbol{m} and \boldsymbol{y} to minimize total costs, including fixed ordering costs K
+ Periodic ordering policy easy to implement in practice
+ Authors claim that theoretical results on this policy has wider applicability
- Certain approximations have to be made to find the best \boldsymbol{m} and \boldsymbol{y}
- Even if the best \boldsymbol{m} and \boldsymbol{y} were to be found, the periodical ordering policy isn't necessarily optimal

Several new assumptions lead to an analytical solution for the periodic ordering policy

