This summary presentation is based on: Roundy, Robin. "98%-effective Integerratio Lot Sizing for One-warehouse Multi-retailer Systems." *Management Science* 31 (11), 1985.

Presented by Riadh Alimi

Two words about the author

• Professor at Cornell in IEOR

Robin Roundy

- PhD in OR from Stanford (1984)
- Fredrick Lanchester Prize (1988)

Problem to solve

How to minimize the average cost of a one-warehouse multi-retailer system ?

Previous solutions

and their limits

- There is no solution to the general case
- Optimal policies are either difficult to compute or have low effectiveness
- > A new class of policies seemed to be needed

Integer ratio policies

a new class of polices

- Each retailer places orders every T_n
- The warehouse places orders every T
- A Policy T' = $(T,T_1,...,T_N)$, is an integer ratio policy if either T/ T_N or T_N/T is an integer
- They have at least a 94% effectiveness and are easy to compute

Average cost of a policy (1/4)

The average cost of an integer ratio policy $T' = (T, T_1, ..., T_N)$ is :

$$c(T) = K_0/T + \sum_{n>1} c_n(T, T_n)$$

where $c_n(T, T_n)$ is the average cost per time unit of supplying the demand for product n

Average cost of a policy (2/4)

Average cost per unit of time for supplying product n :

$$c_n(T, T_n) = K_n/T + h'_n T_n$$

Average cost of a policy (3/4)

If $T_n < T$ Inventory is held both at he warehouse and the retailer warehouse retailer Average cost per unit of time for supplying product n : $c_n(T, T_n) = K_n/T + h'_n T_n + h(T - T_n)$

Average cost of a policy (4/4)

The average cost becomes : $c(T') = K_0/T + \sum_{n>1} c_n(T, T_n)$

With
$$c_n(T, T_n) = \begin{cases} K_n/T_n + (h^n + h_n)T_n & \text{if } T_n > T \\ K_n/T_n + h_nT_n h^n T & \text{if } T_n < T \end{cases}$$

Where h_n is the echelon holding cost : $h_n = h'_n - h^n$

Lower bound of the average cost of all policies by relaxation (1/2)

1. We minimize c_n over all T_n for a given T :

which introduce 3 sets we will need further :

$$G(T) = \{ n / T < \tau_{n}^{'} \} \qquad E(T) = \{ n / \tau_{n} < T < \tau_{n}^{'} \} \qquad L(T) = \{ n / \tau_{n}^{'} < T \}$$

$$let b_{n}(t) = inf_{Tn>0} c_{n}(T, T_{n}) = \begin{cases} 2[K_{n}(h^{n} + h_{n})]^{1/2} & \text{if } n \aleph G \\ K_{n}/T + (h^{n} + h_{n})T & \text{if } n \aleph E \\ 2(K_{n}h_{n})^{1/2} + h^{n}T & \text{if } n \aleph L \end{cases}$$

Lower bound of the average cost of all policies by relaxation (2/2)

2. We minimize now the cost for T :

 $B(T) = K_0/T + \Sigma_{n>1} b_n(T, T_n)$

Using the fact that B(T) = K(T)/T + M(T) + H(T)Twhere B,M and H are constant piecewise functions

We can write an algorithm to minimize B in O(N logN) time

 $B^* = B(T^*)$ is a lower bound on the average cost of all integer-ratio policies. We can show that it is also the lower bound for all policies

Order preserving policies

The cost of an order preserving policy can be seen as the sum of costs of single-facility lot-sizing type

Let T'* be the optimal relaxed order policy, notice that :

 $T_n^* > T^*$ when n $\aleph G$ $T_n^* = T^*$ when n $\aleph E$ $T_n^* < T^*$ when n $\aleph L$

 $\begin{array}{l} T' = (T, T_1, \ldots, T_N), \text{ is said order preserving if} \\ T_n > T & \text{when } n \aleph G \\ T_n = T & \text{when } n \aleph E \\ T_n < T & \text{when } n \aleph L \end{array}$

The average cost can then be rewritten as $c(T') = (K/T + HT) + \sum_{n \wr G \cup L} (K_n/T_n + H_nT_n)$ With $K = K_0 + \sum_{n \wr R \in K_n}$ $H = \sum_{n \wr R \in (h^n + h_n)} + \sum_{n \wr L} h^n$ $H_n = (h^n + h_n)$ if $n \wr R \in A_n$ aggregate set-up cost for $W = \{0\} UE$ aggregate holding cost rate for Waverage holding cost for GUL

It follows that $B^* = c(T^{*}) = M + \sum_{n \approx G \cup L} M_n$

With $M = 2(KH)^{1/2}$ and $M_n = 2(K_nH_n)^{1/2}$

Let's define H_n by $K_n/H_n = T^{*2}$ for $n \otimes W = \{0\}UE$

The lower bound theorem

The minimum relaxed average cost B^* is a lower bound on the average cost of all feasible policies over every finite horizon

Let C(t') be the cost of an arbitrary policy over the interval [0,t')

Using the idea that it is possible to allocate the costs incurred by an arbitrary policy to individual facilities

We can show that $C(t') > B^*$

The q-Optimal Integer-Ratio Lot-Sizing

It is possible find an integer-ratio policy whose effectiveness is at least 94%

The Optimal Power-of-two

It is possible find a integer-ratio policy whose effectiveness is 98%