This summary presentation is based on:

 Roundy, Robin. "98\%-effective Integerratio Lot Sizing for One-warehouse Multi-retailer Systems." Management Science 31 (11), 1985.
Presented by Riadh Alimi

Two words about the author

- Professor at Cornell in IEOR

Robin
Roundy

- PhD in OR from Stanford (1984)
- Fredrick Lanchester Prize (1988)

Problem to solve
 How to minimize the average cost of a one-warehouse multi-retailer system?

Details of the problem

- A single warehouse delivers product n to retailer n only $\mathrm{n}=1 . . \mathrm{N}$
- No shortage allowed
- Delivery is instantaneous
- Set-up cost K_{n}
- h^{n} : holding cost rate of product n per time unit at the warehouse
- h_{n} : holding cost rate of product n per time unit at retailer n
- Constant demand rate per unit of time at each retailer : 2
- Continuous time
- Infinite horizon

Previous solutions
 and their limits

- There is no solution to the general case
- Optimal policies are either difficult to compute or have low effectiveness
> A new class of policies seemed to be needed

Integer ratio policies
 a new class of polices

- Each retailer places orders every T_{n}
- The warehouse places orders every T
- A Policy $\mathrm{T}^{\prime}=\left(\mathrm{T}, \mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{N}}\right)$, is an integer ratio policy if either T / T_{N} or T_{N} / T is an integer
- They have at least a 94\% effectiveness and are easy to compute

Average cost of a policy (1/4)

The average cost of an integer ratio policy $\mathrm{T}^{\prime}=\left(\mathrm{T}, \mathrm{T}_{1}, \ldots, \mathrm{~T}_{N}\right)$ is :

$$
c(T)=K_{0} / T+\Sigma_{n>1} c_{n}\left(T, T_{n}\right)
$$

where $\mathrm{c}_{\mathrm{n}}\left(\mathrm{T}, \mathrm{T}_{\mathrm{n}}\right)$ is the average cost per time unit of supplying the demand for product n

Average cost of a policy (2/4)

$$
\text { If } T_{n}>T
$$

No inventory is held at he warehouse

Retailer
Inventory size

Average cost per unit of time for supplying product n :

$$
\mathrm{c}_{\mathrm{n}}\left(\mathrm{~T}, \mathrm{~T}_{\mathrm{n}}\right)=\mathrm{K}_{\mathrm{n}} / \mathrm{T}+\mathrm{h}_{\mathrm{n}}^{\prime} \mathrm{T}_{\mathrm{n}}
$$

Average cost of a policy (3/4)

$$
\text { If } T_{n}<T
$$

Inventory is held both at he warehouse and the retailer

Average cost per unit of time for supplying product n :

$$
c_{n}\left(T, T_{n}\right)=K_{n} / T+h_{n}^{\prime} T_{n}+h\left(T-T_{n}\right)
$$

Warehouse inventory

Retailer inventory

Average cost of a policy (4/4)

The average cost becomes: $c\left(T^{\prime}\right)=K_{0} / T+\Sigma_{n>1} c_{n}\left(T, T_{n}\right)$

$$
\text { With } c_{n}\left(T, T_{n}\right)= \begin{cases}K_{n} / T_{n}+\left(h^{n}+h_{n}\right) T_{n} & \text { if } T_{n}>T \\ K_{n} / T_{n}+h_{n} T_{n} h^{n} T & \text { if } T_{n}<T\end{cases}
$$

Where h_{n} is the echelon holding cost : $h_{n}=h_{n}^{\prime}-h^{n}$

Lower bound of the average cost of all policies by relaxation (1/2)

1. We minimize c_{n} over all T_{n} for a given T :

with $\tau^{\prime}{ }_{n}=\left[K_{n} /\left(h^{n}+h_{n}\right)\right]^{1 / 2}$ and $\tau_{n}=\left(K_{n} / h_{n}\right)^{1 / 2}$
which introduce 3 sets we will need further :

$$
\begin{aligned}
& G(T)=\left\{n / T<\tau_{n}^{\prime}\right\} \\
& E(T)=\left\{n / \tau_{n}<T<\tau_{n}^{\prime}\right\} \\
& L(T)=\left\{n / \tau_{n}{ }_{n}<T\right\} \\
& \text { let } b_{n}(t)=\inf _{T n>0} C_{n}\left(T, T_{n}\right)= \begin{cases}2\left[K_{n}\left(h^{n}+h_{n}\right)\right]^{1 / 2} & \text { if } n \not Q G \\
K_{n} / T+\left(h^{n}+h_{n}\right) T & \text { if } n \not Q E \\
2\left(K_{n} h_{n}\right)^{1 / 2}+h^{n} T & \text { if } n \not Q L\end{cases}
\end{aligned}
$$

Lower bound of the average cost of all policies by relaxation (2/2)

2. We minimize now the cost for T :
$B(T)=K_{0} / T+\Sigma_{n>1} b_{n}\left(T, T_{n}\right)$
Using the fact that $B(T)=K(T) / T+M(T)+H(T) T$
where B, M and H are constant piecewise functions
We can write an algorithm to minimize B in $O(N \log N)$ time
$B^{*}=B\left(T^{*}\right)$ is a lower bound on the average cost of all integer-ratio policies. We can show that it is also the lower bound for all policies

Order preserving policies

The cost of an order preserving policy can be seen as the sum of costs of single－facility lot－sizing type

Let T＇＊be the optimal relaxed order policy，notice that ：
$T_{n}^{*}>T^{*}$ when $n \mathbb{Q} G$
$T_{n}=T^{*}$ when n 叉E
$T^{*}{ }_{n}<T^{*} \quad$ when $n \mathbb{Q} L$
$\mathrm{T}^{\prime}=\left(\mathrm{T}, \mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{N}}\right)$ ，is said order preserving if
$T_{n}>T$ when $n \vee G$
$\mathrm{T}_{\mathrm{n}}=\mathrm{T}$ when n 叉 E
$\mathrm{T}_{\mathrm{n}}<\mathrm{T}$ when $\mathrm{n} \mathbb{\mathrm { L }}$
The average cost can then be rewritten as $\mathrm{c}\left(\mathrm{T}^{\prime}\right)=(\mathrm{K} / \mathrm{T}+\mathrm{HT})+\sum_{\text {n®GuL }}\left(\mathrm{K}_{\mathrm{n}} / \mathrm{T}_{\mathrm{n}}+\mathrm{H}_{\mathrm{n}} \mathrm{T}_{\mathrm{n}}\right)$
With $K=K_{0}+\Sigma_{n 冈 E} K_{n} \quad$ aggregate set－up cost for $W=\{0\} U E$
$H=\Sigma_{\text {nQE }}\left(h^{n}+h_{n}\right)+\Sigma_{\text {n®QL }} h^{n} \quad$ aggregate holding cost rate for W
$H_{n}=\left(h^{n}+h_{n}\right)$ if $n \mathbb{Q} G, h_{n}$ if $n \mathbb{Q} L \quad$ average holding cost for GUL
It follows that $\mathrm{B}^{*}=\mathrm{c}\left(\mathrm{T}^{\prime *}\right)=\mathrm{M}+\sum_{\text {næGuL }} \mathrm{M}_{\mathrm{n}}$
With $M=2(K H)^{1 / 2}$ and $M_{n}=2\left(K_{n} H_{n}\right)^{1 / 2}$
Let＇s define H_{n} by $K_{n} / H_{n}=T^{* 2}$ for $n \mathbb{Q} W=\{0\} U E$

The lower bound theorem

The minimum relaxed average cost B^{*} is a lower bound on the average cost of all feasible policies over every finite horizon

Let $\mathrm{C}\left(\mathrm{t}^{\prime}\right)$ be the cost of an arbitrary policy over the interval $\left[0, \mathrm{t}^{\prime}\right)$
Using the idea that it is possible to allocate the costs incurred by an arbitrary policy to individual facilities

We can show that $\mathrm{C}\left(\mathrm{t}^{\prime}\right)>\mathrm{B}^{*}$

The q-Optimal Integer-Ratio Lot-Sizing

It is possible find an integer-ratio policy whose effectiveness is at least 94\%

The Optimal Power-of-two

It is possible find a integer-ratio policy whose effectiveness is 98%

