Determination of Expected Profit for Newsboy for Uniform Demand

Assume that demand is from a normal distribution with mean and standard deviation given by μ, σ. Let the sales price be p, the salvage price be s, and the item cost be c.
$\Pi(Q)$ is the expected profit for the newsboy from ordering Q units.
$\phi(x \mid \mu, \sigma)$ denotes the probability density function for a normal distribution with parameters μ, σ.

$$
\Pi(Q)=\int_{x=-\infty}^{x=Q}(p x+s(Q-x)) \phi(x \mid \mu, \sigma) d x+\int_{x=Q}^{x=\infty}(p Q) \phi(x \mid \mu, \sigma) d x-c Q
$$

Explanation:

- The first integral is over the demand realizations that are less than the order quantity Q ; if demand equals x and if $x<Q$, then the newsboy will sell x units at price p and salvage ($\mathrm{Q}-\mathrm{x}$) units at s.
- The second integral is over the demand realizations that are more than the order quantity Q; in these cases, the newsboy can only sell Q units at price p.
- The last term is what the newsboy pays for ordering Q units.

To evaluate this expression, we re-write as follows:

$$
\begin{aligned}
& \Pi(Q)=\int_{x=-\infty}^{x=Q}(p x+s(Q-x)) \phi(x \mid \mu, \sigma) d x+\int_{x=Q}^{x=\infty}(p Q) \phi(x \mid \mu, \sigma) d x-c Q \\
& =\int_{x=-\infty}^{x=Q}(p x+s(Q-x)) \phi(x \mid \mu, \sigma) d x+\int_{x=Q}^{x=\infty}(p x+s(Q-x)) \phi(x \mid \mu, \sigma) d x-\int_{x=Q}^{x=\infty}(p x+s(Q-x)) \phi(x \mid \mu, \sigma) d x \\
& +\int_{x=Q}^{x=\infty}(p Q) \phi(x \mid \mu, \sigma) d x-c Q \\
& =\int_{x=-\infty}^{x=\infty}(p x+s(Q-x)) \phi(x \mid \mu, \sigma) d x-\int_{x=Q}^{x=\infty}(p-s)(x-Q) \phi(x \mid \mu, \sigma) d x-c Q
\end{aligned}
$$

We can then simplify this as follows:

$$
\Pi(Q)=p \mu+s(Q-\mu)-(p-s) \int_{x=Q}^{x=\infty}(x-Q) \phi(x \mid \mu, \sigma) d x-c Q
$$

Now the crux of the evaluation is to evaluate the third integral; for normal distribution the following can be shown, directly from algebraic transformations:

$$
\begin{aligned}
& \int_{x=Q}^{x=\infty}(x-Q) \phi(x \mid \mu, \sigma) d x=\sigma \int_{x=z}^{x=\infty}(x-z) \phi(x \mid 0,1) d x \\
& \text { where } z=\frac{Q-\mu}{\sigma}
\end{aligned}
$$

Note that $\phi(x \mid 0,1)$ is the probability density function for the standard normal distributed random variable with mean of 0 and standard deviation of 1 .

The above expression is known as the partial loss function and can be calculated as follows:

$$
\begin{aligned}
& \text { PartialLossFunction }(z)=\int_{x=z}^{x=\infty}(x-z) \phi(x \mid 0,1) d x=\phi(z \mid 0,1)-z \times(1-\Phi(z)) \\
& =\operatorname{NORMDIST}(z, 0,1, \text { FALSE })-z \times(1-\operatorname{NORMDIST}(z, 0,1, \text { TRUE }))
\end{aligned}
$$

Where $\Phi(z)$ is the cumulative distribution function for the standard normal. The spreadsheet commands are shown for calculation.

Thus the newsboy profit calculation is
$\Pi(Q)=p \mu+s(Q-\mu)-(p-s)$ PartialLossFunction $\left(z=\frac{Q-\mu}{\sigma}\right)-c Q$

MIT OpenCourseWare
http://ocw.mit.edu

15.772J / EC.733J D-Lab: Supply Chains

Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

