

Class outline:

- Roles of inventory
- Inventory related costs
- Types of inventory models
- Focus on EOQ model today (Newsvender model next class)

Inventory Management

Inventory Management

Inventory

Inventory: goods that a business holds for resale and/or redistribution

• Why should a company hold inventory?

Roles of Inventory

- Anticipation Stock
- Cycle Stock
- Safety Stock
- Pipeline Stock
- Decoupling Stock

Anticipation Stock

- Stock built in **anticipation** of demand or price change
- Production capacity cannot meet demand at the time that occurs

Capacity Limits

Cycle Stock

- Stock created due to cyclic nature of replenishment
- Exists due to economies of scale in replenishment (eg, a fixed cost in placing an order)
- When we reduce time between orders, cycle stock goes down
- Milk at home or in a grocery store

Safety Stock

• Exists to protect against uncertainty in demand, in lead times, and in yields

• Larger uncertainty -> larger safety stock

 Serves as a counter measure to uncertainty and disruption in the supply chain

Pipeline Stock

 Stock that has been ordered but has not arrived (in-transit stock)

 Caused by unavoidable time lags and delays

Decoupling Stock

- Stock that is positioned within a manufacturing setting or supply chain, whose purpose is to decouple the system
- Allows the upstream segment to operate independently of the downstream segment

 Can often be viewed analogous to a safety stock

Roles of Inventory

- Anticipation Stock
- Cycle Stock
- Safety Stock
- Pipeline Stock
- Decoupling Stock

Types of Inventory

Raw materials

• Finished goods

Costs of holding inventory

What are the costs of holding inventory?

- Cost of capital
- Cost of storage space and handling
- Inventory risk costs: obsolescence, damage, theft
- Inventory service costs: taxes, insurance

Inventory related costs

Ordering Costs

- Fixed and Variable

- Shortage Costs
 - Expedited Shipping, Reimbursement to Customers, Loss of Customer Goodwill
 - These costs are hard to estimate...

Fundamental Questions

• What items should be stocked?

• Where should items be stocked?

• How much should be ordered?

When should an order be placed?

Types of inventory models

- **Demand:** constant, deterministic, stochastic
- Lead times: "0", ">0", stochastic
- Horizon: single period, finite, infinite
- Products: one product, multiple products
- Capacity: order/inventory limits, no limits
- Service: meet all demand, shortages allowed

Types of inventory models

- **Demand: constant**, deterministic, stochastic
- Lead times: "0", ">0", stochastic
- Horizon: single period, finite, infinite
- Products: one product, multiple products
- Capacity: order/inventory limits, no limits
- Service: meet all demand, shortages allowed

Economic Ordering Quantity (EOQ) Model

EOQ: Motivating Example

- You are managing diesel inventory of an outpost for a humanitarian organization in Uganda
- Your task is to determine when to order diesel fuel and how much to order
- Initiating an order costs \$250 (transportation, road security)
- The fuel costs \$1/liter
- To hold the fuel, it costs \$0.50/year/liter (cost of capital e.g. redirected from medicine)
- Your demand is constant and stable at 4,000 liters/year

EOQ: Motivating Example

- What is the key tradeoff?
 - Batch size too large (too much average inventory) versus
 - Batch size too small (too much ordering cost)
- For a fixed demand rate, the larger the order, the larger the holding cost
- The smaller the order, the larger the fixed ordering cost per unit

Other Examples

 Can you think about examples from your projects that are similar to the previous example?

What's the order costs? What's the holding costs?

EOQ: Notation

- Decision Variables
 - Fixed order quantity: Q
 - Time between orders: T
- Inventory Costs
 - Fixed order cost: K
 - Variable cost/unit (purchase price): *c*
 - Inventory holding cost/unit/time: h
- Assume constant demand rate of λ units/time; must meet all demand

EOQ: Key Observations

- It's best to order only when inventory is zero. Why?
 - Zero lead time \rightarrow Instantaneous replenishment
 - Therefore, no need to order inventory if can fill orders from existing stock
- The optimal ordering quantity will be constant.
 - Safety stock is no longer beneficial (constant demand, 0 lead time) and only incurs holding cost

EOQ: Graphical Representation

EOQ: Objective

- Total average cost = average holding cost + average order cost
 - Average holding cost =(holding \$/unit/time)*(avg. inventory)
 = hQ/2
 - Average order cost = order cost per replenishment cycle length of replenishment cycle =(K + cQ)/T = $K\lambda/Q + c\lambda$
- Meet all demand while minimizing the total average cost (\$/time)

EOQ: Optimization

- min(Total average cost) = min f(Q)
 =min(hQ/2 + Kλ/Q + cλ)
- 1st Order Condition: f' (Q*)=0
 f' (Q)=h/2 Kλ/Q²
- 2nd Order Condition: f'' (Q*)≥0

f' '(Q)=2K λ /Q³ (≥0 for any quantity)

$$Q^* = \sqrt{\frac{2K\lambda}{h}}$$

EOQ: Optimization Results

Order Quantity/Order Time Decisions

$$Q^* = \sqrt{\frac{2K\lambda}{h}} \qquad \qquad T^* = \sqrt{\frac{2K}{h\lambda}}$$

• Optimal Holding Cost

$$\frac{hQ^*}{2} = \sqrt{\frac{K\lambda h}{2}}$$

• Optimal Fixed Order Cost

$$\frac{K\lambda}{Q^*} = \sqrt{\frac{K\lambda h}{2}}$$

• Total Cost

EOQ: Graphical View

EOQ: Example Solution

• Optimal order quantity in liters =

$$Q^* = \sqrt{\frac{2K\lambda}{h}} = \sqrt{\frac{(2)(250)(4000)}{0.5}} = 2000$$

Cycle time in year

$$T^* = Q^* / \lambda = .5$$

Annual holding cost in dollars

$$\frac{hQ^*}{2} = \sqrt{\frac{K\lambda h}{2}} = \sqrt{\frac{(250)(4000)(0.5)}{2}} = 500$$

Annual order cost in dollars

$$\frac{K + cQ^*}{T^*} = \sqrt{\frac{K\lambda h}{2}} + c\lambda = \sqrt{\frac{(250)(4000)(0.5)}{2}} + 1 \times (4000) = 4500$$

Total annual cost in dollars

$$500 + 4500 = 5000$$

EOQ: Sensitivity Analysis

- What if we don't order **exactly** Q*?
 - Fixed order cost and holding cost are affected
 - Variable order cost is independent of Q*
 - Say we order <sup>\$\gamma Q\$* instead...how is fixed order cost + holding cost affected?
 </sup>

EOQ: Sensitivity Analysis

$$C(Q^*) = \sqrt{2K\lambda h}$$

$$C(\gamma Q^*) = \frac{1}{\gamma} \sqrt{\frac{1}{2}K\lambda h} + \gamma \sqrt{\frac{1}{2}K\lambda h}$$

$$= \sqrt{2K\lambda h} (\gamma + \frac{1}{\gamma})/2$$

$$\frac{C(\gamma Q^*)}{C(Q^*)} = (\gamma + \frac{1}{\gamma})/2$$

γ	0.5	0.8	0.9	1	1.2	1.5	2
$\frac{C(\gamma Q^*)}{C(Q^*)}$	1.25	1.025	1.006	1	1.017	1.083	1.25

EOQ: Key Observations

 Optimal decision (order quantity Q*) independent of variable ordering cost c

 Rather insensitive to order quantities that are close to optimal, but *not* optimal

 Optimal fixed order cost equals optimal inventory holding cost

Extensions

- Lead-time L
 - Same ordering quantity
 - Order L periods in advance, when stock reaches L/D
- Finite production rates / Capacity restriction on orders
- Quantity discounts
- Allow shortage

Types of inventory models

- **Demand: constant**, deterministic, stochastic
- Lead times: "0", ">0", stochastic
- Horizon: single period, finite, infinite
- Products: one product, multiple products
- Capacity: order/inventory limits, no limits
- Service: meet all demand, shortages allowed

Economic Ordering Quantity (EOQ) Model

Next Class

- Demand: constant, deterministic, stochastic
- Lead times: "0", ">0", stochastic
- Horizon: single period, finite, infinite
- Products: one product, multiple products
- Capacity: order/inventory limits, no limits
- Service: meet all demand, shortages allowed

Newsvendor Model

MIT OpenCourseWare http://ocw.mit.edu

15.772J / EC.733J D-Lab: Supply Chains Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.