Supply Chain Contracts

Goals of this lecture

- Define and explain what is a Supply Chain Contract
- Define and exemplify what is double marginalization
- Contrast and compare different types of contracts

What is a contract?

A contract is a (legal) agreement between a buyer and a seller that defines the terms and conditions of sales.

Why do businesses use contracts?

- They reduce uncertainty (both in demand and manufacturing cost)
- Help to share risk
- Incentivize sales efforts
- Important for information sharing

Why do businesses use contracts?

 Can you come up with examples of contracts in your projects?

 What are the risks/uncertainties in the supply chain?

Production Cost: c \$/unit

Sale Price: p \$/unit

Demand: D units

Contracts in an abstract Sense

Some ingredients of a contract:

- Unit price
- Transfer payment
- Returns payments
- Sales rebates

Contracts in an abstract Sense

• The more "ingredients" the more complicated to implement

Not all contracts are created equal

Motivating Example

- You were hired to design a wholesale-price contract for distributors of a Plumpy Nut type product in Ethipoia
- Each jar costs \$2 to produce
- The shelf life of this product is 6 months, and the suggested retail price is \$4
- The salvage (recycling) value for unused jars is \$1
- Demand is Uniform[0,100]
- What is the wholesale price that maximizes your profit?

Motivating Example – Part 2 p \$/unit c \$/unit s \$/unit

Manufacturer = Retailer

Production Cost: c \$/unit Sale Price: p \$/unit Salvage value: s \$/unit Customers

Demand: D units

What just happened?

	Original	Manuf. = Distributor	
Order quantity	33.3	66.6	
Expected Profit Retailer	16.6	66.6	
Expected Profit Manufacturer	33.3		
Expected total Profit	50	66.6	

33% Loss due to lack of coordination

Wholesale Price

Fixed Price (wholesale) Contracts

- First case is an example of a Fixed-Price Contract
- This reduction in profit is called **Double Marginalization**:

If every firm chooses to maximize its own expected profit, the result is a higher market price, lower market demand, and lower total profit compared to the SC's maximum profit.

What can we do to reduce Double Marginalization?

• We change the contract between manufacturer and retailer!

• The maximum profit that can be obtained is through perfect coordination

Buy Back Contracts

- Retailer receives credit from manufacturer on units leftover at the end of the selling season
- Reduces the risk for the retailer due to demand uncertainty (overstock)
- Do you know any real-world examples?

Comparison with Maximum Profit

	Original	Buy Back	Manuf. = Distributor
Order Quantity	33.3	40	66.6
Expected Profit Retailer	16.6 (33%)	20 (36%)	
Expected Profit Manufacturer	33.3 (66%)	36 (64%)	66.6
Expected total Profit	50	56	66.6

Drawbacks:

- Requires manufacturer to verify leftover units
- May reduce buyer selling effort

Wholesale price

Buy Back price = \$1.5/unit

There are many others...

• Quantity Flexibility, Fixed price incentive...

Moral:

Working together with the other players in the SC can help increase the size of the "pie", even if your slice is proportionally smaller.

The Supply Chain Game

You will operate here with 1 warehouse and 1 factory

The Supply Chain Game

- You sell foam for insulation
- Demand is highly seasonal but stable
- The game starts at day 730, two years after Jacobs began producing and marketing the chemical.
- Game ends at day 1460, when a new product is introduced and the foam becomes obsolete

Demand

Operations

- Single factory, single warehouse
- No backorders: when client doesn't find product, he goes somewhere else
- Your team can make:
 - Capacity additions to the factory.
 - The finished goods inventory threshold that triggers production of a new batch in the factory.
 - The factory's production batch size.
 - Whether batches are transported to the warehouse by mail or by truck.

The winning team is the one with the highest cash position on day 1460.

- Register your team (detailed instructions coming soon)
- Figure out how you will manage inventory

• Have fun!

Overcoming demand uncertainty

- Three examples of contracts
 - Buyback contracts
 - Quantity flexibility (option) contracts
 - Revenue Sharing contracts

Buyback contracts

- Manufacturer pays the distributor for leftover units at the end of selling season
- Encourages high buyer orders
- Examples:
 - Publishing industry
 - Music industry
- Disadvantages
- Would it work in an emerging marker?

Quantity Flexibility

- Manufacturer places an order at the beginning of the season, but the quantity can be adjusted up or down
- Also encourages higher ordering quantities
- Examples: Fashion industry
- Disadvantages

Revenue Sharing

- Manufacturer receives some fraction of sales revenue
- Both share risk due to demand uncertainty
- Example: Blockbuster
- Would it work in an emerging market?

MIT OpenCourseWare http://ocw.mit.edu

15.772J / EC.733J D-Lab: Supply Chains Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.