

Lecture 2:
Training Deep Neural Networks

15.S04: Hands-on Deep Learning
Spring 2024
Farias, Ramakrishnan

Recap: Designing a DNN

Hidden Hidden
Input Layer 1 Layer 2 Output
Layer layer

x1

xk

User chooses the # of hidden layers, # units in each layer, the
activation function(s) for the hidden layers and for the output layer

2

 Application: Predicting heart disease

3

Predicting Heart Disease

Using a dataset of patients made available by the Cleveland
Clinic, we will build our first NN model to predict if a patient
has been diagnosed with heart disease from demographics
and bio-markers

What we want to predict

4

Let’s design our NN

• We design i.e., “lay out” the network
• Choose the number of hidden layers and the number of

‘neurons’ in each layer
• Pick the right output layer based on the type of the output

5

Let’s design our NN

• We design i.e., “lay out” the network
• Choose the number of hidden layers and the number of

‘neurons’ in each layer 1 hidden layer with 16 ReLU neurons
• Pick the right output layer based on the type of the output

Sigmoid

6

Let’s visualize this NN

Input
Layer

x1

x29

There are only 13 input variables but some of
them are categorical so we one-hot-encode them,
resulting in 29 inputs (details in colab).

7

Let’s visualize this NN

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

8

Let’s visualize this NN

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

How many parameters (i.e., weights and biases) does this network have?

9

Let’s visualize this NN

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

How many parameters (i.e., weights and biases) does this network have?
29 * 16 + 16 + 16 * 1 + 1 = 497

10

We will now “translate” this network
into Keras code to demonstrate how
easy it is.

We will give a fuller intro to
Keras/Tensorflow and train this model
in Colab soon.

11

Typically, we define each layer from left to
right

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

12

Let’s start with the input layer

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

13

We specify the shape of the input

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

14

Next, we define the hidden layer

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

keras.layers.Dense(16, activation=“relu”)

15

Since this layer is fully connected to the
previous and later layers, we use ‘Dense’

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

keras.layers.Dense(16, activation=“relu”)

16

We specify the number of neurons we
want in this layer …

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

keras.layers.Dense(16, activation=“relu”)

17

… and the activation function

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

keras.layers.Dense(16, activation=“relu”)

18

Next, we ”feed” the input to this layer …

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

keras.layers.Dense(16, activation=“relu”)(input)

19

… and give a name to the output of this layer

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

h = keras.layers.Dense(16, activation=“relu”)(input)

20

Finally, we come to the output layer

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

h = keras.layers.Dense(16, activation=“relu”)(input)

keras.layers.Dense(1, activation="sigmoid”)

21

We have just one unit in this layer …

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

h = keras.layers.Dense(16, activation=“relu”)(input)

keras.layers.Dense(1, activation="sigmoid”)

22

… and indicate that we need a sigmoid
activation function

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

h = keras.layers.Dense(16, activation=“relu”)(input)

keras.layers.Dense(1, activation="sigmoid”)

23

As we did before, we “feed” the output of the
hidden layer to this layer …

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

h = keras.layers.Dense(16, activation=“relu”)(input)

keras.layers.Dense(1, activation="sigmoid”)(h)

24

… and give the output of this layer a name.

Input Hidden layer Output
Layer layer (16 units)

x1

x29

y

input = keras.Input(shape=29)

h = keras.layers.Dense(16, activation=“relu”)(input)

output = keras.layers.Dense(1, activation="sigmoid”)(h)

25

We have defined and connected the layers

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

h = keras.layers.Dense(16, activation=“relu”)(input)

output = keras.layers.Dense(1, activation="sigmoid”)(h)

26

We have defined and connected the layers.
The final step is to formally define a model.

Input Hidden layer Output
Layer layer (16 units)

x1

y

x29

input = keras.Input(shape=29)

h = keras.layers.Dense(16, activation=“relu”)(input)

output = keras.layers.Dense(1, activation="sigmoid”)(h)

model = keras.Model(input, output)

27

That’s it!

A Neural Model for Heart Disease Prediction
input = keras.Input(shape=29)

h = keras.layers.Dense(16, activation=“relu”)(input)

output = keras.layers.Dense(1, activation="sigmoid”)(h)

model = keras.Model(input, output)

We will show how to train this model with
real data and use it for prediction after we
cover some conceptual building blocks

28

 Training a Deep Neural Network

29

Recap: Training Linear and Logistic Regression
Models

+ Data lm

Linear Regression

30

Recap: Training Linear and Logistic Regression
Models

+ Data lm

+ Data glm

Logistic Regression

Linear Regression

31

Recap: Training Linear and Logistic Regression
Models

+ Data lm

+ Data glm

Logistic Regression

Linear Regression

Recall

• Training is finding values for the weights/coefficients so that the model’s predicNons
come as close to the actual values as possible

• ‘lm’ and ‘glm’ use opNmizaNon algorithms under the hood to find these “best” values

32

Training a DNN

+ Data

Training a DNN is no different. It just
happens to be a very complex
function with lots of parameters.

Training

33

The essence of training is to find the “best”
values for the weights and biases i.e., those
that minimize a function that measures the
discrepancy between the actual and
predicted values

These functions are called loss functions in
the DL world

34

 Loss Functions

35

 Loss functions

• A “loss function” is a function that quantifies the error in a model’s
prediction.
• If the predictions are close to the actual values, the “loss” would be _____.
• A perfect model would have a loss of _____.

36

 Loss functions

• A “loss function” is a function that quantifies the error in a model’s
prediction.
• If the predictions are close to the actual values, the “loss” would be small.
• A perfect model would have a loss of zero.

37

 Loss functions

• A “loss funcGon” is a funcGon that quanGfies the error in a model’s
predicGon.
• If the predic=ons are close to the actual values, the “loss” would be small.
• A perfect model would have a loss of zero.

• In linear regression, you will recall that we quanGfy this error using
“sum of squared errors”. So, “sum of squared errors” is the loss
funcGon used in linear regression

38

 Loss functions

• A “loss function” is a function that quantifies the error in a model’s
prediction.
• If the predictions are close to the actual values, the “loss” would be small.
• A perfect model would have a loss of zero.

• In linear regression, you will recall that we quantify this error using
”sum of squared errors”. So, “sum of squared errors” is the loss
function used in linear regression

• The loss function we chose must be matched well with the kind of
output that comes out of the model.

39

Mean Squared Error (MSE) Loss is commonly
used for general numerical outputs

�! − ����� �!
%

Actual value of Predicted value of

$

�
1

!"#

ith data point ith data point

40

In the Heart Disease Prediction Model
the prediction is a probability number
and the actual output is 0-1.

What is a good loss function in this
situation?

41

For data points with y = 1 (i.e., patients with heart disease),
lower predicted probabilities should have higher loss

Loss

Predicted probability

For data points with y = 1

42

We can capture this requirement using the log function

Loss

Predicted probability

1/1000 9.97

1/10 3.32

1/2 1.0

1 0.0

Predicted -log(predicted
probability probability)

For data points with y = 1,
loss = -log(predicted probability)

43

44

For data points with y = 0 (i.e., patients without heart
disease), higher predicted probabilities should have higher
loss

Loss

Predicted probability

For data points with y = 0

45

Loss

Predicted probability

We can capture this requirement as well using the log
function

For data points with y = 0,
loss = -log(1 - predicted probability)

Predicted probability -log(1 - predicted
probability)

1/1000 0.001

1/10 0.15

1/2 1.0

0.999999 19.93

46

Summary

Predicted probability

Loss Loss

Predicted probability

For data points with y = 0,
loss = -log(1 - predicted probability)

For data points with y = 1,
loss = -log(predicted probability)

47

This can be compactly written as a single
expression

For data points with y = 0,
loss = -log(1 - predicted probability)

For data points with y = 1,
loss = -log(predicted probability)

Predicted
probability for the
ith data point

Predicted
probability for the
ith data point

−𝑦! log 𝑚𝑜𝑑𝑒𝑙 𝑥! 	− 1 − 𝑦! log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥!)

48

1
𝑛
1
!"#

$

−𝑦! log 𝑚𝑜𝑑𝑒𝑙 𝑥! 	− 1 − 𝑦! log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥!)

We can now average this across all n data
points

49

1
𝑛
1
!"#

$

−𝑦! log 𝑚𝑜𝑑𝑒𝑙 𝑥! 	− 1 − 𝑦! log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥!)

This is the Binary Cross-Entropy Loss function!

Minimizing loss functions

51

Minimizing functions

52

• Loss functions are just a particular kind of function so
we will first consider the general problem of
minimizing an arbitrary function

• After we develop some intuition about how to do
this, we will return to the specific task of minimizing a
loss function

Minimizing a single-variable function

53

Let’s say we want to minimize the function:

How can we go about this?

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

54

Let’s say we want to minimize the function:

Can we use its derivative?

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a single-variable function

55

Let’s say we want to minimize the function:

What does the derivative at a point tell us?

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a single-variable function

56

Let’s say we want to minimize the function:

What does the derivative at a point tell us?

The derivative (or slope) tells us the change in g(w) for a
small increase in w

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a single-variable function

The value of knowing the derivative

57
https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

If the derivative at a point w is
…

What it means

Positive Increasing w slightly will increase g(w)

The value of knowing the derivative

58
https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

If the derivative at a point w is
…

What it means

Positive Increasing w slightly will increase g(w)

Negative Increasing w slightly will decrease g(w)

The value of knowing the derivative

59
https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

If the derivative at a point w is
…

What it means

Positive Increasing w slightly will increase g(w)

Negative Increasing w slightly will decrease g(w)

~0 Changing w slightly won’t change g(w)

This suggests an algorithm for minimizing
g(w)

60

1. Start with some point w

This suggests an algorithm for minimizing
g(w)

61

1. Start with some point w
2. Calculate the derivative (i.e., slope) of g(w) at w

This suggests an algorithm for minimizing
g(w)

62

1. Start with some point w
2. Calculate the derivative (i.e., slope) of g(w) at w

If the derivative is … What it means Since we want to
minimize loss, do this …

Positive Increasing w will increase
the loss function

_______ w slightly

Negative Increasing w will
decrease the loss
function

_______ w slightly

~0 Changing w won’t change
the loss function

This suggests an algorithm for minimizing
g(w)

63

1. Start with some point w
2. Calculate the derivative (i.e., slope) of g(w) at w

If the derivative is … What it means Since we want to
minimize loss, do this …

Positive Increasing w will increase
the loss function

Reduce w slightly

Negative Increasing w will
decrease the loss
function

Increase w slightly

~0 Changing w won’t change
the loss function

Stop

This suggests an algorithm for minimizing
g(w)

64

1. Start with some point w
2. Calculate the derivative (i.e., slope) of g(w) at w

3. If you have reached max iterations or run out of time, stop. Else, go to
step 2

If the derivative is … What it means Since we want to
minimize loss, do this …

Positive Increasing w will increase
the loss function

Reduce w slightly

Negative Increasing w will
decrease the loss
function

Increase w slightly

~0 Changing w won’t change
the loss function

Stop

This is Gradient Descent!

65

1. Start with some point w
2. Calculate the derivative (i.e., slope) of g(w) at w

3. If you have reached max iterations or run out of time, stop. Else, go to
step 2

If the derivative
is …

What it means Since we want to minimize loss, do this
…

Positive Increasing wwill increase the
loss function

Reduce w slightly

Negative Increasing wwill decrease the
loss function

Increase w slightly

~0 Changing wwon’t change the
loss function

Stop

This can
be written
compactly
as

𝑤	 ← 𝑤 − 𝛼
𝑑𝑔(𝑤)
𝑑𝑤

Any guesses when Gradient Descent
was invented?

66

Gradient descent was invented in 1847
by Cauchy!

67

Cauchy, A. (1847). Methode generale pour la res- olu>on des systemes d’equa>ons
simultanees. Comptes Rendus de l’Académie des Sciences, 25. 91

https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy

Lithograph of Augustin-Louis Cauchy is in the public domain. Source: Wikimedia Commons.

Gradient Descent

68

𝑤	 ← 𝑤 − 𝛼
𝑑𝑔(𝑤)
𝑑𝑤

𝛼 is called the “learning rate” and is our way of
ensuring that we increase or decrease 𝑤 slightly

Typically set to small values (e.g., 0.1, 0.001,
0.0001) and determined by trial and error

Let’s apply this algorithm to g(w)

69https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

𝑤	 ← 𝑤 − 𝛼
𝑑𝑔(𝑤)
𝑑𝑤

70
https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Gradient Descent in action

We will start at 𝑤 =
2.5, set 𝛼 = 1 and
run the algorithm.
In a few iterations,
it finds the
minimum.

71

𝑔 𝑤1, 𝑤2 = 𝑤1
2+𝑤2

2+ 2

We can calculate the partial derivative of 𝑔 𝑤1, 𝑤2

𝜕𝑔
𝜕𝑤1

,
𝜕𝑔
𝜕𝑤2

= [2𝑤1, 2𝑤2]

How should we interpret this?

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a multi-variable function

72

𝑔 𝑤1, 𝑤2 = 𝑤1
2+𝑤2

2+ 2

∇𝑔 =
𝜕𝑔
𝜕𝑤1

,
𝜕𝑔
𝜕𝑤2

= [2𝑤1, 2𝑤2]

The first number is the change in g(w) for a small increase in w1,
with w2 kept unchanged. The second number is the change in
g(w) for a small increase in w2, with w1 kept unchanged

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a multi-variable function

73

𝑔 𝑤1, 𝑤2 = 𝑤1
2+𝑤2

2+ 2

∇𝑔 =
𝜕𝑔
𝜕𝑤1

,
𝜕𝑔
𝜕𝑤2

= [2𝑤1, 2𝑤2]

The first number is the change in g(w) for a small increase in w1,
with w2 kept unchanged. The second number is the change in
g(w) for a small increase in w2, with w1 kept unchanged

This is called the “gradient” of 𝑔 𝑤1, 𝑤2 and written as ∇𝑔

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a multi-variable function

74

∇𝑔 =
𝜕𝑔
𝜕𝑤1

,
𝜕𝑔
𝜕𝑤2

= [2𝑤1, 2𝑤2]

We can simply do gradient descent on each coordinate by
using the corresponding partial derivative.

𝑤! ← 𝑤1− 𝛼 (
,-

,.!
)

𝑤/ ← 𝑤2− 𝛼 (
,-
,."

)

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a multi-variable function

75

∇𝑔 = [2𝑤1, 2𝑤2]

𝑤! ← 𝑤1− 𝛼 (
,-

,.!
)

𝑤/ ← 𝑤2− 𝛼 (
,-
,."

)

As before, this whole thing can be summarized compactly as:

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

𝑤	 ← 𝑤 − 𝛼∇𝑔(𝑤)

Minimizing a multi-variable function

Gradient Descent in two dimensions

76

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

𝑔 𝑤0, 𝑤1 = 𝑤02+ 𝑤12+ 2

Gradient descent figures © Jeremy Watt/neonwatty on GitHub. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

https://ocw.mit.edu/help/faq-fair-use

GD may stop near a local minimum (not necessarily a
global minimum) or a saddle point but we don’t worry
about this in practice.

77

Minimizing a loss function with
gradient descent

78

Minimize

What are the variables we need to
change to minimize this function?

1
𝑛
$
&'!

(

−𝑦& log 𝑚𝑜𝑑𝑒𝑙 𝑥& 	− 1 − 𝑦& log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥&)

Minimizing a loss funcPon with
gradient descent

79

Minimize

What are the variables we need to
change to minimize this function?

They are the parameters “hiding”
inside 𝑚𝑜𝑑𝑒𝑙 𝑥!

1
𝑛
$
&'!

(

−𝑦& log 𝑚𝑜𝑑𝑒𝑙 𝑥& 	− 1 − 𝑦& log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥&)

Minimizing a loss function with
gradient descent

80

Minimize

Recall this model
and the NN it
represents

1
𝑛$
&'!

(

−𝑦& log 𝑚𝑜𝑑𝑒𝑙 𝑥& 	− 1 − 𝑦& log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥&)

Minimizing a loss function with
gradient descent

81

Minimize

w1, w2, …, w13 are the
variables we can
change to minimize
the loss function

The values of x1, x2 and y, on the
other hand, are just data

1
𝑛
$
&'!

(

−𝑦& log 𝑚𝑜𝑑𝑒𝑙 𝑥& 	− 1 − 𝑦& log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥&)

Minimizing a loss funcPon with
gradient descent

82

Minimize

Imagine replacing 𝑚𝑜𝑑𝑒𝑙 𝑥! with the mathematical expression above wherever
𝑚𝑜𝑑𝑒𝑙 𝑥! appears in the loss function

Now, your loss function is just a ”good old” function of w1, w2, …, w13 and you can apply
gradient descent to it as we normally would.

1
𝑛
$
&'!

(

−𝑦& log 𝑚𝑜𝑑𝑒𝑙 𝑥& 	− 1 − 𝑦& log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥&)

Backpropagation (aka ‘backprop’)

83

• Backpropagation is an efficient way to compute the
gradient of the loss function

• The efficiency stems from exploiting the layer-by-layer
architecture of NNs

BackpropagaBon (aka ‘backprop’)

84

• Backpropagation is an efficient way to compute the
gradient of the loss function

• The efficiency stems from exploiting the layer-by-layer
architecture of NNs

• By organizing the computation in the form of a
“computational graph”, we can incrementally calculate the
gradient one layer at a time using matrix multiplications
(and other simple operations). This approach also
eliminates redundant calculations

Backpropagation (aka ‘backprop’)

85

• Backpropagation is an efficient way to compute the gradient of
the loss function

• The efficiency stems from exploiting the layer-by-layer
architecture of NNs

• By organizing the computation in the form of a “computational
graph”, we can incrementally calculate the gradient one layer at
a time using matrix multiplications (and other simple
operations). This approach also eliminates redundant
calculations

• It turns out that Graphic Processing Units (GPUs), originally
invented to speed up video games, are perfectly suited for
matrix multiplications!

Backpropagation (aka ‘backprop’)

86

• BackpropagaIon is an efficient way to compute the gradient of
the loss funcIon

• The efficiency stems from exploiIng the layer-by-layer
architecture of NNs

• By organizing the computaIon in the form of a “computaIonal
graph”, we can incrementally calculate the gradient one layer at
a Ime using matrix mulIplicaIons (and other simple
operaIons). This approach also eliminates redundant
calculaIons

• It turns out that Graphic Processing Units (GPUs), originally
invented to speed up video games, are perfectly suited for
matrix mulIplicaIons!

• Backprop + GPUs è Fast calculaIon of loss funcIon gradients!

Sections 2.4.3 and 2.4.4 of textbook have more detail. Also see HODL-SP24-Lec-2-
Backprop_Example.pdf for a worked-out example

Backpropagation (aka ‘backprop’)

87

• Backpropagation is an efficient way to compute the gradient of
the loss function

• The efficiency stems from exploiting the layer-by-layer
architecture of NNs

• By organizing the computation in the form of a “computational
graph”, we can incrementally calculate the gradient one layer at
a time using matrix multiplications (and other simple
operations). This approach also eliminates redundant
calculations

• It turns out that Graphic Processing Units (GPUs), originally
invented to speed up video games, are perfectly suited for
matrix multiplications!

• Backprop + GPUs è Fast calculation of loss function gradients!

Sections 2.4.3 and 2.4.4 of textbook have more detail.

Please see HODL-SP24-Lec-2-Backprop_Example.pdf
for a step-by-step example

88

Gradient Descent à StochasEc Gradient Descent

89

Making Gradient Descent work with large
datasets

90

• Problem: For large datasets (e.g., n in the millions), computing the
gradient of the loss function can be very expensive

Making Gradient Descent work with large
datasets

91

• Problem: For large datasets (e.g., n in the millions),
computing the gradient of the loss function can be very
expensive

• The Solution:
• At each iteration, instead of using all the n data points in the

calculation of the gradient of the loss function, randomly choose just
a few of the n observations (called a minibatch) and use only these
observations to compute the partial derivatives.

𝑤	 ← 𝑤 − 𝛼∇𝑔(𝑤)

Making Gradient Descent work with large
datasets

92

• Problem: For large datasets (e.g., n in the millions), computing
the gradient of the loss function can be very expensive

• The Solution:
• At each iteration, instead of using all the n data points in the

calculation of the gradient of the loss function, randomly choose just
a few of the n observations (called a minibatch) and use only these
observations to compute the partial derivatives.

• This is called Stochastic Gradient Descent (SGD)*

* Strictly speaking, SGD chooses just one observation. What we are describing here is Minibatch Gradient
Descent but the term SGD is widely used in the field to describe the latter so we will do the same

Making Gradient Descent work with large
datasets

93

• Problem: For large datasets (e.g., n in the millions), computing the gradient of the
loss function can be very expensive

• The Solution:
• At each iteration, instead of using all the n data points in the calculation of the gradient of

the loss function, randomly choose just a few of the n observations (called a minibatch)
and use only these observations to compute the partial derivatives.

• This is called Stochastic Gradient Descent (SGD)

• Because not all n data points are used in the calculation, this only approximates the true
gradient but nevertheless works well in practice. In fact, because it is only an
approximation of the true gradient, it can sometimes escape local minima.

• SGD comes in many “flavors” and we will use a flavor called “Adam” as our default in
HODL

VisualizaPon of an actual DL loss
funcPon landscape

94

https://arxiv.org/pdf/1712.09913.pdf

Summary of overall training flow

95

Image: Page 61 of textbook

SGD and its siblings

MIT OpenCourseWare
https://ocw.mit.edu

15.773 Hands-on Deep Learning

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

