Lecture 2:
Training Deep Neural Networks

15.504: Hands-on Deep Learning
Spring 2024

MANAGEMENT Farias, Ramakrishnan
SLOAN SCHOOL

Recap: Designing a DNN

Hidden Hidden

Input Layer 1 Layer 2 Output
Layer layer

coe Q_.

Xk

User chooses the # of hidden layers, # units in each layer, the
activation function(s) for the hidden layers and for the output layer

Application: Predicting heart disease

Predicting Heart Disease

Using a dataset of patients made available by the Cleveland
Clinic, we will build our first NN model to predict if a patient
has been diagnosed with heart disease from demographics
and bio-markers Fastrs Type

Age Age in years Numerical
Sex (1 = male; 0 = female) Categorical
cP Chest pain type (0, 1, 2, 3,4) Categorical
Trestbpd Resting blood pressure (in mm Hg on admission) Numerical
Chol Serum cholesterol in mg/dl Numerical
FBS fasting blood sugar in 120 mg/dI (1 = true; 0 = false) Categorical
RestECG Resting electrocardiogram results (0, 1, 2) Categorical
Thalach Maximum heart rate achieved Numerical
Exang Exercise induced angina (1 = yes; 0 = no) Categorical
Oldpeak ST depression induced by exercise relative to rest Numerical
Slope Slope of the peak exercise ST segment Numerical
CA Number of major vessels (0-3) colored by fluoroscopy Both numerical & categorical
Thal 3 = normal; 6 = fixed defect; 7 = reversible defect Categorical

Wh a t We Wan t to pre dict @osis of heart disease (1 = true; 0 = false) D

Let’s design our NN

We design i.e., “lay out” the network

- Choose the number of hidden layers and the number of
‘neurons’ in each layer

- Pick the right output layer based on the type of the output

Let’s design our NN

We design i.e., “lay out” the network

- Choose the number of hidden layers and the number of
‘neurons’ in each layer 1 hidden layer with 16 ReLU neurons

- Pick the right output layer based on the type of the output
Sigmoid

Let’s visualize this NN

Input

Column Description Feature Type
Laye r Age Age in years Numerical
Sex (1 = male; 0 = female) Categorical
CcP Chest pain type (0, 1, 2, 3,4) Categorical
Trestbpd Resting blood pressure (in mm Hg on admission) Numerical
Chol Serum cholesterol in mg/dl Numerical
FBS fasting blood sugar in 120 mg/dI (1 = true; 0 = false) Categorical
RestECG Resting electrocardiogram results (0, 1, 2) Categorical
o Thalach Maximum heart rate achieved Numerical
® Exang Exercise induced angina (1 = yes; 0 = no) Categorical
® Oldpeak ST depression induced by exercise relative to rest Numerical
Slope Slope of the peak exercise ST segment Numerical
CA Number of major vessels (0-3) colored by fluoroscopy Both numerical & categorical
Thal 3 = normal; 6 = fixed defect; 7 = reversible defect Categorical
Target Diagnosis of heart disease (1 = true; 0 = false) Target

There are only 13 input variables but some of
them are categorical so we one-hot-encode them,
resulting in 29 inputs (details in colab).

Let’s visualize this NN

Input

Hidden layer Output
Layer

(16 units) layer

() S

&
o

G

Let’s visualize this NN

:_r;pg’ﬁ Hidden layer Output
Y (16 units) layer

() S

@_Y
G

How many parameters (i.e., weights and biases) does this network have?

Let’s visualize this NN

:_r;pg: Hidden layer Output
Y (16 units) layer

() S

@_Y
G

How many parameters (i.e., weights and biases) does this network have?
29 *16+16+16 *1+1 =497

10

S 15
We will now “translate” this network

into Keras code to demonstrate how
easy It is.

We will give a fuller intro to
Keras/Tensorflow and train this model
in Colab soon.

11

Typically, we define each layer from left to
right
.

:_r;pg: Hidden layer Output
Y (16 units) layer

() S

&
g

o

12

Let’s start with the input layer

:_r;pg'ﬁ Hidden layer Output
Y (16 units) layer

() S

&
g

G

input = keras.Input(shape=29)

13

We specify the shape of the input

Input

Hidden layer Output
Layer

(16 units) layer

() S

&
g

G

input = keras.Input(shape=29)

14

Next, we define the hidden layer

:_r;pg'ﬁ Hidden layer Output
y (16 units) layer

() S

@_Y
G

keras.layers.Dense(16, activation=“relu”)

15

Since this layer is fully connected to the

previous and later layers, we use ‘Dense’
]

Input

Hidden layer Output
Layer

(16 units) layer

() S

@_Y
G

keras.layers.Dense(16, activation=“relu”)

16

We specify the number of neurons we

want in this layer ...
]

:_r;pg'ﬁ Hidden layer Output
y (16 units) layer

() S

@_Y
G

keras.layers.Dense(16, activation=“relu”)

17

... and the activation function

:_r;pg'ﬁ Hidden layer Output
Y (16 units) layer

() S

@_Y
G

keras.layers.Dense(16, activation="“relu”)

18

Next, we “feed” the input to this layer ...

:_r;pg'ﬁ Hidden layer Output
Y (16 units) layer

() S

@_Y
G

keras.layers.Dense(16, activation=“relu”) (input)

19

... and give a name to the output of this layer

:_r;pg: Hidden layer Output
Y (16 units) layer

() S

@_Y
G

h = keras.layers.Dense(16, activation=“relu”)(input)

20

Finally, we come to the output layer

:_r;pg'ﬁ Hidden layer Output
Y (16 units) layer

() S

@_Y
G

keras.layers.Dense(1l, activation="sigmoid”)

21

We have just one unit in this layer ...

:_r;pg'ﬁ Hidden layer Output
Y (16 units) layer

() S

@_Y
G

keras.layers.Dense(1l, activation="sigmoid™)

22

... and indicate that we need a sigmoid

activation function
.

Input

Hidden layer Output
Layer

(16 units) layer

() S

@_Y
G

keras.layers.Dense(1l, activation="sigmoid”)

23

As we did before, we “feed” the output of the

hidden layer to this layer ...
.

Input

Hidden layer Output
Layer

(16 units) layer

() S

@_Y
G

keras.layers.Dense(1, activation="sigmoid”)(h)

24

... and give the output of this layer a name.

:_r;pg'ﬁ Hidden layer Output
Y (16 units) layer

() S

@_Y
G

output = keras.layers.Dense(1l, activation="sigmoid”) (h)

25

We have defined and connected the layers

:_r;pg'ﬁ Hidden layer Output
Y (16 units) layer

()
@_Y
&

input = keras.Input(shape=29)

h = keras.layers.Dense(16, activation=“relu”)(input)

output = keras.layers.Dense(1l, activation="sigmoid”)(h)

26

The final step is to formally define a model.
]

:_r;pg'ﬁ Hidden layer Output
Y (16 units) layer

&)
: : 9
<

input = keras.Input(shape=29)

h = keras.layers.Dense(16, activation=“relu”)(input)

output = keras.layers.Dense(1l, activation="sigmoid”)(h)

model = keras.Model(input, output)

27

That’s it!

A Neural Model for Heart Disease Prediction

input = keras.Input(shape=29)
h = keras.layers.Dense(16, activation=“relu”)(input)

output = keras.layers.Dense(1l, activation="sigmoid”)(h)

model = keras.Model(input, output)

We will show how to train this model with
real data and use it for prediction after we
cover some conceptual building blocks

28

- Training a Deep Neural Network

29

Recap: Training Linear and Logistic Regression

Models
.

Linear Regression

y=ﬁ()+ﬂ1xl +ﬂ2x2+---+ﬂnxn + Data m

y=28+0.89x; —39x; + ... + 1.06x,

30

Recap: Training Linear and Logistic Regression

Models
.

Linear Regression

y=ﬁ()+ﬂ1xl +ﬂ2x2+---+ﬂnxn + Data m

Logistic Regression

y= 1 + Data
1+ e—(ﬂ(,+/31x1+ﬂlx;+..4+ﬂ,,x,,)

y=28+0.89x; —39x; + ... + 1.06x,

1
y= 1 + e—(2:8+0.89x1-3.9x2+...4+1.06x,)

31

Recap: Training Linear and Logistic Regression

Models
.

Linear Regression

y=ﬂ()+ﬂ1xl +ﬂ2x2+---+ﬂnxn + Data m

Logistic Regression

y= 1 + Data
1 + e_(ﬂ(_h"'plxl+ﬂlxl+“‘+ﬂnx")

Recall

y=28+0.89x; —39x; + ... + 1.06x,

1
y= 1 + e—(2:8+0.89x1-3.9x2+...4+1.06x,)

Training is finding values for the weights/coefficients so that the model’s predictions
come as close to the actual values as possible

‘Im” and ‘glm’ use optimization algorithms under the hood to find these “best” values

32

Training a DNN

+ Data

Training

Training a DNN is no different. It just
happens to be a very complex
function with lots of parameters.

33

The essence of training is to find the “best”
values for the weights and biases i.e., those
that minimize a function that measures the
discrepancy between the actual and
predicted values

These functions are called loss functions in
the DL world

34

- Loss Functions

35

Loss functions

A “loss function” is a function that quantifies the error in a model’s
prediction.

If the predictions are close to the actual values, the “loss” would be

- A perfect model would have a loss of

36

Loss functions

A “loss function” is a function that quantifies the error in a model’s
prediction.

If the predictions are close to the actual values, the “loss” would be small.

- A perfect model would have a loss of zero.

37

Loss functions

In linear regression, you will recall that we quantify this error using
“sum of squared errors”. So, “sum of squared errors” is the loss
function used in linear regression

38

Loss functions

- The loss function we chose must be matched well with the kind of
output that comes out of the model.

39

Mean Squared Error (MSE) Loss is commonly
used for general numerical outputs

-
1 - 2
_ I __ i
n; (y“ mod(il(x))

Actual value of Predicted value of
ith data point i™" data point

40

In the Heart Disease Prediction Model
the prediction is a probability number
and the actual output is O-1.

What is a good loss function in this
situation?

41

For data points with y =1 (i.e., patients with heart disease),
lower predicted probabilities should have higher loss

Loss

Predicted

For data points withy = 1

42

We can capture this requirement using the log function

) "; Predicted -log(predicted
Loss "1\ probability probability)

1/1000 9.97
1/10 3.32
1/2 1.0
1 0.0

Predicted probability

For data points withy =1,
loss = -log(predicted probability)

43

For data points with y = 0 (i.e., patients without heart
disease), higher predicted probabilities should have higher

loss
0

|
|

Loss

Predicted probability

For data points withy =0

44

We can capture this requirement as well using the log
function

Predicted probability | -log(1 - predicted ;
probability) |

1/1000 0.001 Loss
1/10 0.15

1/2 1.0

0.999999 19.93

Predicted probability

For data points with y = 0,
loss = -log(1 - predicted probability

45

Summary

|
Loss o B Loss

Predicted probability Predicted probability

For data points with y = 1, For data points withy =0,
loss = -log(predicted probability) loss = -log(1 - predicted probability)

46

This can be compactly written as a single

expression
N

For data points with y = 1, For data points with y = 0,
loss = -log(predicted probability) loss = -log(1 - predicted probability)

|

—y'log (model(xi)) — (1 — yi)log(l — model(xi))

|

Predicted Predicted
probability for the probability for the
ith data point ith data point

47

We can now average this across all n data

B il . . .
E;—yl log (model(x‘)) — (1 — y‘)log(l — model(x‘))

48

This is the Binary Cross-Entropy Loss function!

n
1 i i
52 —y'log model(x) — (1 - y")log(1 — model(x"))

=1

49

Minimizing loss functions

51

Minimizing functions

Loss functions are just a particular kind of function so
we will first consider the general problem of
minimizing an arbitrary function

. After we develop some intuition about how to do
this, we will return to the specific task of minimizing a
loss function

52

Minimizing a single-variable function
-

Let’s say we want to minimize the function:
1 ¢

— —— (a} % &
g(w) = =0 (w* + w” + 10w)

How can we go about this?

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html

53

Minimizing a single-variable function
-

Let’s say we want to minimize the function:

¥
w) = —(w +w + 10w |
g(w) = = () | : ,-")
.\\ _: //I .
! PR 2 -
Can we use its derivative? ‘,
—g\w)= —w + —-w+ - P
awg 25 25 5 /";,/”1 “ 1 2

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html

54

Minimizing a single-variable function

Let’s say we want to minimize the function:

¥
1 ,) “5 .'
g(w) = —(w* + w* + 10w) /
50 \ 4] /
\ 3| / t
\ N /
\ 1] /
; SN ____%___.-” ; ; l
What does the derivative at a point tell us?
9 W)= 2wdt Loy] W/
R w) = —Ww —w — /__,_,;*_-—»"" . ‘
ow? " " 25 T25 5 I

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html

55

Minimizing a single-variable function

Let’s say we want to minimize the function:

g(w) = =0 (w* + w® + 10w) | y /
.u,\ ; /," 29 to 3 G)
e —T= 2 i
What does the derivative at a point tell us?
’ ()=~ + —w 4 - s
- w) = —w —Ww — el B ~ y
aw?" T 25" T 5" T 5

The derivative (or slope) tells us the cha/nge in g(w) for a
small increase in w

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html

56

The value of knowing the derivative
=

Positive Increasing w slightly will increase g(w)

—

O—

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html

57

The value of knowing the derivative
-

Positive Increasing w slightly will increase g(w)

Negative Increasing w slightly will decrease g(w)

I

O—

58

https://kenndanielso.github.io/mlirefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html

The value of knowing the derivative

Positive Increasing w slightly will increase g(w)

Negative Increasing w slightly will decrease g(w)

~0 Changing w slightly won’t change g(w)
O

59

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html

This suggests an algorithm for minimizing

g(w)
B N

1. Start with some point w

60

This suggests an algorithm for minimizing

g(w)
B N

1. Start with some point w

2. Calculate the derivative (i.e., slope) of g(w) at w

61

This suggests an algorithm for minimizing

g(w)
B N

1. Start with some point w

2. Calculate the derivative (i.e., slope) of g(w) at w

If the derivative is ... Since we want to
minimize loss, do this ...

Positive Increasing w will increase w slightly
the loss function

Negative Increasing w will w slightly
decrease the loss
function

~0 Changing w won’t change

the loss function

62

This suggests an algorithm for minimizing

g(w)
B N

1. Start with some point w

2. Calculate the derivative (i.e., slope) of g(w) at w

If the derivative is ... Since we want to
minimize loss, do this ...

Positive Increasing w will increase Reduce w slightly
the loss function

Negative Increasing w will Increase w slightly
decrease the loss
function

~0 Changing w won’t change Stop

the loss function

63

This suggests an algorithm for minimizing

g(w)
B N

1. Start with some point w

2. Calculate the derivative (i.e., slope) of g(w) at w

If the derivative is ... Since we want to
minimize loss, do this ...

Positive Increasing w will increase Reduce w slightly
the loss function

Negative Increasing w will Increase w slightly
decrease the loss
function

~0 Changing w won’t change Stop

the loss function

3. If you have reached max iterations or run out of time, stop. Else, go to
step 2

64

This is Gradient Descent!

1. Start with some point w

2. Calculate the derivative (i.e., slope) of g(w) at w

If the derivative m Since we want to minimize loss, do this
is ...

This can = _ - ,
. Positive Increasing w will increase the Reduce w slightly
be written loss function
com pactly Negative Increasing w will decrease the Increase w slightly
loss function
as

~0 Changing w won’t change the Stop

dg(w)
dw

3. If you have reached max iterations or run out of time, stop. Else, go to
step 2

w << WwW—«

65

Any guesses when Gradient Descent
was invented?

66

Gradient descent was invented in 1847

by Cauchy!
-

Cauchy, A. (1847). Methode generale pour la res- olution des systemes d’equations
simultanees. Comptes Rendus de 'Académie des Sciences, 25. 91

Augustin-Louis Cauchy

Cauchy around 1840. Lilhogaph by Zéphirin
Belliard after a painting by Jean Roller.

Lithograph of Augustin-Louis Cauchy is in the public domain. Source: Wikimedia Commons.

https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy

67

Gradient Descent
S

dg(w)
dw

W << WwW—«a

« is called the “learning rate” and is our way of
ensuring that we increase or decrease w slightly

Typically set to small values (e.g., 0.1, 0.001,
0.0001) and determined by trial and error

68

Let’s apply this algorithm to g(w)

g(w) = %(w‘1 + v’ + 10w) |
0 2 1 1 \ :
3 |
—g(w)= —w® + —w+ = T
50 ? W) = 25 25 "5 | |

dg(w)

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html 69

Gradient Descent in action
1

(V)

We will start at w =
2.5,seta=1and
run the algorithm.
In a few iterations,
it finds the
minimum.

glw)

0.4

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html

70

Minimizing a multi-variable function

glwy,wy) = wi? + wy? + 2

We can calculate the partial derivative of g(w{, w,)

dg dg
[awl — [2W1, ZWZ]

)
0W2

How should we interpret this?

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html 71

Minimizing a multi-variable function

-1
glwy,wy) = wi? + wy? + 2

dg
, aWZ

g
V9 = [Far 5] = 120120

The first number is the change in g(w) for a small increase in w,,
with w, kept unchanged. The second number is the change in
g(w) for a small increase in w,, with w, kept unchanged

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html 72

Minimizing a multi-variable function

-1
glwy,wy) = wi? + wy? + 2

dg adg
Vg = [awl, S| = [2w1,2w:]

The first numbér is the change in g(w) for a small increase in w,,
with w, kept'unchanged. The second number is the change in
g(w) for & small increase in w,, with w, kept unchanged

This is called the “gradient” of g(wq, w,) and written as Vg

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html 73

Minimizing a multi-variable function

dg
, aWZ

g
V9 = [Far 5] = (201,20

We can simply do gradient descent on each coordinate by
using the corresponding partial derivative.

ag
Wy ‘_W1_“(6W)
1
ag
W2 (_Wz_a(aw)
2

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html 74

Minimizing a multi-variable function

ag
Wy «w,—a (aw)
1
29
W2 «— WZ — (awz)

As before, this whole thing can be summarized compactly as:

w «<w—aVg(w)

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html 75

Gradient Descent in two dimensions
—

g(wo,wy) = we? + wy? + 2

9wy, wy)

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4 Gradient_descent.html

Gradient descent figures © Jeremy Watt/neonwatty on GitHub. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 7 6

https://ocw.mit.edu/help/faq-fair-use

GD may stop near a local minimum (not necessarily a
global minimum) or a saddle point but we don’t worry
about this in practice.

77

Minimizing a loss function with

gradient descent
e

Mlnlmlze %z llog model(x — (1 — yH)log(1 — model(x'))

i

What are the variables we need to
change to minimize this function?

78

Minimizing a loss function with

gradient descent
e

n

Mlnlmlze %Z —y'log (model(xi)) — (1 — yi)log(l — model(xi))

i=1

What are the variables we need to
change to minimize this function?

They are the parameters “hiding”
inside model(x;)

79

Minimizing a loss function with

gradient descent
e

... 1
Minimize .
n

[\/j:

—y'log model(x)) — (1 — yY)log(1 — model(x"))
~

i=1 %,

; |
model(x') = _ . _ ;
1 4+ e—(wi+wrmax(0,w3+ws x| +wsx;)+wsmax(0,wr+wsx; +wox;)+wiomax(0,w+wix| +wi3x3))
. Input Hidden layer Output
Recall this model Layer layer

and the NN it

represents \

80

Minimizing a loss function with
gradient descent

n
. . . 1
Minimize ﬁz y'log model(x)) — (1 —yY)log(1 — model(x)
=1 ™.

“
.
o
.
K
o
K
.
o
.
o
o
K
o
o
.
o
o
.
o
o
S
o
K
S

model(x') = , . _ -
1 4 e—(w] +wymax(0,ws+ws x| +wsx;)+ wesmax(0,w7+wg x| +wo x5)+ wigmax(0,w+wi2x| +wi3x5))

W1, W5, ..., Wiz are the The values of x; x,andy, on the
variables we can other hand, are just data
change to minimize

the loss function

81

Minimizing a loss function with
gradient descent

n
o .
Minimize ;Z yilog model(x)) — (1 - y")log(1 — model(x"))

“
.
o
-
K
o
K
.
o
.
o
o
K
o
o
.
o
o
.
o
o
S
o
K
S

model(x') = , . _ -
1 4 e—(wl +wymax(0,ws+ws x| +wsx;)+ wesmax(0,w7+wg x| +wo x5)+ wigmax(0,w+wi2x| +wi3x5))

Imagine replacing model(xi) with the mathematical expression above wherever

model(xi) appears in the loss function

Now, your loss function is just a “good old” function of w;, w,, ..., w3 and you can apply
gradient descent to it as we normally would.

82

Backpropagation (aka ‘backprop’}
-4

Backpropagation is an efficient way to compute the
gradient of the loss function

- The efficiency stems from exploiting the layer-by-layer
architecture of NNs

83

Backpropagation (aka ‘backprop’)
-4

By organizing the computation in the form of a
“computational graph”, we can incrementally calculate the
gradient one layer at a time using matrix multiplications
(and other simple operations). This approach also
eliminates redundant calculations

84

Backpropagation (aka ‘backprop’}

It turns out that Graphic Processing Units (GPUs), originally
invented to speed up video games, are perfectly suited for
matrix multiplications!

85

Backpropagation (aka ‘backprop’}

Backprop + GPUs = Fast calculation of loss function gradients!

Sections 2.4.3 and 2.4.4 of textbook have more detail. Also see HODL-SP24-Lec-2- 86
Backprop_Example.pdf for a worked-out example

Backpropagation (aka ‘backprop’}

Backpropagation is an efficient way to compute the gradient of
the loss function

The efficiency stems from exploiting the layer-by-layer
architecture of NNs

By organizing the computation in the form of a “computational
graph”, we can incrementally calculate the gradient one layer at
a time using matrix multiplications (and other simple
operations). This approach also eliminates redundant
calculations

It turns out that Graphic Processing Units (GPUs), originally
invented to speed up video games, are perfectly suited for
matrix multiplications!

Backprop + GPUs =2 Fast calculation of loss function gradients!

Sections 2.4.3 and 2.4.4 of textbook have more detail. 87

Please see HODL-SP24-Lec-2-Backprop Example.pdf
for a step-by-step example

88

Gradient Descent = Stochastic Gradient Descent

89

Making Gradient Descent work with large

datasets
0

Problem: For large datasets (e.g., n in the millions), computing the
gradient of the loss function can be very expensive

90

Making Gradient Descent work with large

datasets
.

w «w—aVg(w)
The Solution: /

- At each iteration, instead of using all the n data points in the
calculation of the gradient of the loss function, randomly choose just
a few of the n observations (called a minibatch) and use only these
observations to compute the partial derivatives.

91

Making Gradient Descent work with large

datasets
0

This is called Stochastic Gradient Descent (SGD)*

* Strictly speaking, SGD chooses just one observation. What we are describing here is Minibatch Gragdi'ent
Descent but the term SGD is widely used in the field to describe the latter so we will do the same

Making Gradient Descent work with large
datasets

Because not all n data points are used in the calculation, this only approximates the true
gradient but nevertheless works well in practice. In fact, because it is only an
approximation of the true gradient, it can sometimes escape local minima.

SGD comes in many “flavors” and we will use a flavor called “Adam” as our default in

HODL

93

Visualization of an actual DL loss

function landscape
-

https://arxiv.org/pdf/1712.09913.pdf

94

Summary of overall training flow

Input X

'

Layer

i

= Weights

(data transformation)

'

Layer

Y

Weights
|

Weight
update

SGD and its siblings

(data transformation)

'

Yl

Image: Page 61 of textbook

Predictions

True targets
Y

Y
Loss score

Figure 2.26 Relationship between
the network, layers, loss function,
and optimizer

95

MIT OpenCourseWare
https://ocw.mit.edu

15.773 Hands-on Deep Learning
Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

