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Recap: Designing a DNN 

Hidden Hidden 
Input Layer 1 Layer 2 Output 
Layer layer 

x1 

xk 

User chooses the # of hidden layers, # units in each layer, the 
activation function(s) for the hidden layers and for the output layer 
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 Application: Predicting heart disease 
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Predicting Heart Disease 

Using a dataset of patients made available by the Cleveland 
Clinic, we will build our first NN model to predict if a patient 
has been diagnosed with heart disease from demographics 
and bio-markers 

What we want to predict 
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Let’s design our NN 

• We design i.e., “lay out” the network 
• Choose the number of hidden layers and the number of 

‘neurons’ in each layer 
• Pick the right output layer based on the type of the output 
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Let’s design our NN 

• We design i.e., “lay out” the network 
• Choose the number of hidden layers and the number of 

‘neurons’ in each layer 1 hidden layer with 16 ReLU neurons 
• Pick the right output layer based on the type of the output 

Sigmoid 
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Let’s visualize this NN 

Input
Layer 

x1 

x29 

There are only 13 input variables but some of 
them are categorical so we one-hot-encode them, 
resulting in 29 inputs (details in colab). 
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Let’s visualize this NN 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

   

y 

x29 
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Let’s visualize this NN 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

        

   

y 

x29 

How many parameters (i.e., weights and biases) does this network have? 
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Let’s visualize this NN 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

        

   

y 

x29 

How many parameters (i.e., weights and biases) does this network have? 
29 * 16 + 16 + 16 * 1 + 1 = 497 
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We will now “translate” this network 
into Keras code to demonstrate how 
easy it is. 

We will give a fuller intro to 
Keras/Tensorflow and train this model 
in Colab soon. 

11 



Typically, we define each layer from left to 
right 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

        

y 

x29 
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Let’s start with the input layer 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

  

y 

x29 

input = keras.Input(shape=29) 
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We specify the shape of the input 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

     

y 

x29 

input = keras.Input(shape=29) 
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Next, we define the hidden layer 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

    

y 

x29 

input = keras.Input(shape=29) 

keras.layers.Dense(16, activation=“relu”) 
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Since this layer is fully connected to the 
previous and later layers, we use ‘Dense’ 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

       
     

y 

x29 

input = keras.Input(shape=29) 

keras.layers.Dense(16, activation=“relu”) 
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We specify the number of neurons we 
want in this layer … 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

      
    

y 

x29 

input = keras.Input(shape=29) 

keras.layers.Dense(16, activation=“relu”) 
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… and the activation function 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

   

y 

x29 

input = keras.Input(shape=29) 

keras.layers.Dense(16, activation=“relu”) 
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Next, we ”feed” the input to this layer … 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

      

y 

x29 

input = keras.Input(shape=29) 

keras.layers.Dense(16, activation=“relu”)(input) 
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… and give a name to the output of this layer 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

        

 

y 

x29 

input = keras.Input(shape=29) 

h = keras.layers.Dense(16, activation=“relu”)(input) 
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Finally, we come to the output layer 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

     

y 

x29 

input = keras.Input(shape=29) 

h = keras.layers.Dense(16, activation=“relu”)(input) 

keras.layers.Dense(1, activation="sigmoid”) 
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We have just one unit in this layer … 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

        

y 

x29 

input = keras.Input(shape=29) 

h = keras.layers.Dense(16, activation=“relu”)(input) 

keras.layers.Dense(1, activation="sigmoid”) 
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… and indicate that we need a sigmoid 
activation function 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

      

y 

x29 

input = keras.Input(shape=29) 

h = keras.layers.Dense(16, activation=“relu”)(input) 

keras.layers.Dense(1, activation="sigmoid”) 
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As we did before, we “feed” the output of the 
hidden layer to this layer … 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

    

y 

x29 

input = keras.Input(shape=29) 

h = keras.layers.Dense(16, activation=“relu”)(input) 

keras.layers.Dense(1, activation="sigmoid”)(h) 
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… and give the output of this layer a name. 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

    

       

 

x29 

y 

input = keras.Input(shape=29) 

h = keras.layers.Dense(16, activation=“relu”)(input) 

output = keras.layers.Dense(1, activation="sigmoid”)(h) 
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We have defined and connected the layers 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

y 

x29 

    

      

input = keras.Input(shape=29) 

h = keras.layers.Dense(16, activation=“relu”)(input) 

output = keras.layers.Dense(1, activation="sigmoid”)(h) 
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We have defined and connected the layers. 
The final step is to formally define a model. 

Input Hidden layer Output 
Layer layer (16 units) 

x1 

y 

x29 

    

       
       

input = keras.Input(shape=29) 

h = keras.layers.Dense(16, activation=“relu”)(input) 

output = keras.layers.Dense(1, activation="sigmoid”)(h) 

model = keras.Model(input, output) 
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That’s it! 

A Neural Model for Heart Disease Prediction 
input = keras.Input(shape=29) 

h = keras.layers.Dense(16, activation=“relu”)(input) 

output = keras.layers.Dense(1, activation="sigmoid”)(h) 

model = keras.Model(input, output) 

We will show how to train this model with 
real data and use it for prediction after we 
cover some conceptual building blocks 
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    Training a Deep Neural Network 

29 



      

 

Recap: Training Linear and Logistic Regression 
Models 

+ Data lm 

Linear Regression 

30 



      

 

Recap: Training Linear and Logistic Regression 
Models 

+ Data lm 

+ Data glm 

Logistic Regression 

Linear Regression 
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Recap: Training Linear and Logistic Regression 
Models 

+ Data lm 

+ Data glm 

Logistic Regression 

Linear Regression 

Recall 

• Training is finding values for the weights/coefficients so that the model’s predicNons 
come as close to the actual values as possible 

• ‘lm’ and ‘glm’ use opNmizaNon algorithms under the hood to find these “best” values 

32 



  

        
   

   

Training a DNN 

+ Data 

Training a DNN is no different. It just 
happens to be a very complex 
function with lots of parameters. 

Training 
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The essence of training is to find the “best” 
values for the weights and biases i.e., those 
that minimize a function that measures the 
discrepancy between the actual and 
predicted values 

These functions are called loss functions in 
the DL world 

34 



 Loss Functions 

35 



            
 

            
    

 Loss functions 

• A “loss function” is a function that quantifies the error in a model’s 
prediction. 
• If the predictions are close to the actual values, the “loss” would be _____. 
• A perfect model would have a loss of _____. 
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 Loss functions 

• A “loss function” is a function that quantifies the error in a model’s 
prediction. 
• If the predictions are close to the actual values, the “loss” would be small. 
• A perfect model would have a loss of zero. 

37 



            
 

             
    

         
            

   

 Loss functions 

• A “loss funcGon” is a funcGon that quanGfies the error in a model’s 
predicGon. 
• If the predic=ons are close to the actual values, the “loss” would be small. 
• A perfect model would have a loss of zero. 

• In linear regression, you will recall that we quanGfy this error using 
“sum of squared errors”. So, “sum of squared errors” is the loss 
funcGon used in linear regression 
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 Loss functions 

• A “loss function” is a function that quantifies the error in a model’s 
prediction. 
• If the predictions are close to the actual values, the “loss” would be small. 
• A perfect model would have a loss of zero. 

• In linear regression, you will recall that we quantify this error using 
”sum of squared errors”. So, “sum of squared errors” is the loss 
function used in linear regression 

• The loss function we chose must be matched well with the kind of 
output that comes out of the model. 
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Mean Squared Error (MSE) Loss is commonly 
used for general numerical outputs 

�! − ����� �! 
% 

Actual value of Predicted value of 

$ 

�
1 
# 
!"# 

ith data point ith data point 
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In the Heart Disease Prediction Model 
the prediction is a probability number 
and the actual output is 0-1. 

What is a good loss function in this 
situation? 

41 



For data points with y = 1 (i.e., patients with heart disease), 
lower predicted probabilities should have higher loss 

Loss 

Predicted probability 

           
  

      

 

For data points with y = 1 
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We can capture this requirement using the log function 

Loss 

        

      
   

 

  

Predicted probability 

1/1000 9.97 

1/10 3.32 

1/2 1.0 

1 0.0 

Predicted -log(predicted 
probability probability) 

For data points with y = 1, 
loss = -log(predicted probability) 
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For data points with y = 0 (i.e., patients without heart 
disease), higher predicted probabilities should have higher
loss

Loss

Predicted probability

For data points with y = 0
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Loss

Predicted probability

We can capture this requirement as well using the log 
function

For data points with y = 0, 
loss = -log(1 - predicted probability)

Predicted probability -log(1 - predicted 
probability)

1/1000 0.001

1/10 0.15

1/2 1.0

0.999999 19.93
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Summary

Predicted probability

Loss Loss

Predicted probability

For data points with y = 0, 
loss = -log(1 - predicted probability)

For data points with y = 1, 
loss = -log(predicted probability)
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This can be compactly written as a single 
expression

For data points with y = 0, 
loss = -log(1 - predicted probability)

For data points with y = 1, 
loss = -log(predicted probability)

Predicted 
probability for the 
ith data point

Predicted 
probability for the 
ith data point

−𝑦! log 𝑚𝑜𝑑𝑒𝑙 𝑥! 	− 1 − 𝑦! log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥! )
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1
𝑛
1
!"#

$

−𝑦! log 𝑚𝑜𝑑𝑒𝑙 𝑥! 	− 1 − 𝑦! log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥! )

We can now average this across all n data 
points
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1
𝑛
1
!"#

$

−𝑦! log 𝑚𝑜𝑑𝑒𝑙 𝑥! 	− 1 − 𝑦! log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥! )

This is the Binary Cross-Entropy Loss function!



Minimizing loss functions
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Minimizing functions

52

• Loss functions are just a particular kind of function so 
we will first consider the general problem of 
minimizing an arbitrary function

• After we develop some intuition about how to do 
this, we will return to the specific task of minimizing a 
loss function



Minimizing a single-variable function

53

Let’s say we want to minimize the function:

How can we go about this?

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html
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Let’s say we want to minimize the function:

Can we use its derivative?

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a single-variable function



55

Let’s say we want to minimize the function:

What does the derivative at a point tell us?

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a single-variable function
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Let’s say we want to minimize the function:

What does the derivative at a point tell us?

The derivative (or slope) tells us the change in g(w) for a 
small increase in w

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a single-variable function



The value of knowing the derivative

57
https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

If the derivative at a point w is 
…

What it means

Positive Increasing w slightly will increase g(w)



The value of knowing the derivative

58
https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

If the derivative at a point w is 
…

What it means

Positive Increasing w slightly will increase g(w)

Negative Increasing w slightly will decrease g(w)



The value of knowing the derivative

59
https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

If the derivative at a point w is 
…

What it means

Positive Increasing w slightly will increase g(w)

Negative Increasing w slightly will decrease g(w)

~0 Changing w slightly won’t change g(w)



This suggests an algorithm for minimizing 
g(w)

60

1. Start with some point  w



This suggests an algorithm for minimizing 
g(w)

61

1. Start with some point  w
2. Calculate the derivative (i.e., slope) of g(w) at w



This suggests an algorithm for minimizing 
g(w)

62

1. Start with some point  w
2. Calculate the derivative (i.e., slope) of g(w) at w

If the derivative is … What it means Since we want to 
minimize loss, do this …

Positive Increasing w will increase 
the loss function

_______ w slightly

Negative Increasing w will 
decrease the loss 
function

_______ w slightly

~0 Changing w won’t change 
the loss function

_______



This suggests an algorithm for minimizing 
g(w)

63

1. Start with some point  w
2. Calculate the derivative (i.e., slope) of g(w) at w

If the derivative is … What it means Since we want to 
minimize loss, do this …

Positive Increasing w will increase 
the loss function

Reduce w slightly

Negative Increasing w will 
decrease the loss 
function

Increase w slightly

~0 Changing w won’t change 
the loss function

Stop



This suggests an algorithm for minimizing 
g(w)

64

1. Start with some point  w
2. Calculate the derivative (i.e., slope) of g(w) at w

3. If you have reached max iterations or run out of time, stop. Else, go to 
step 2 

If the derivative is … What it means Since we want to 
minimize loss, do this …

Positive Increasing w will increase 
the loss function

Reduce w slightly

Negative Increasing w will 
decrease the loss 
function

Increase w slightly

~0 Changing w won’t change 
the loss function

Stop



This is Gradient Descent! 

65

1. Start with some point  w
2. Calculate the derivative (i.e., slope) of g(w) at w

3. If you have reached max iterations or run out of time, stop. Else, go to 
step 2 

If the derivative 
is …

What it means Since we want to minimize loss, do this 
…

Positive Increasing wwill increase the 
loss function

Reduce w slightly

Negative Increasing wwill decrease the 
loss function

Increase w slightly

~0 Changing wwon’t change the 
loss function

Stop

This can 
be written 
compactly 
as

𝑤	 ← 𝑤 − 𝛼
𝑑𝑔(𝑤)
𝑑𝑤



Any guesses when Gradient Descent 
was invented?
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Gradient descent was invented in 1847
by Cauchy!

67

Cauchy, A. (1847). Methode generale pour la res- olu>on des systemes d’equa>ons
simultanees. Comptes Rendus de l’Académie des Sciences, 25. 91 

https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy

Lithograph of Augustin-Louis Cauchy is in the public domain. Source: Wikimedia Commons. 



Gradient Descent 

68

𝑤	 ← 𝑤 − 𝛼
𝑑𝑔(𝑤)
𝑑𝑤

𝛼 is called the “learning rate” and is our way of 
ensuring that we increase or decrease 𝑤 slightly

Typically set to small values (e.g., 0.1, 0.001, 
0.0001) and determined by trial and error



Let’s apply this algorithm to g(w)

69https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

𝑤	 ← 𝑤 − 𝛼
𝑑𝑔(𝑤)
𝑑𝑤
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https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Gradient  Descent in action

We will start at 𝑤 =
2.5, set 𝛼 = 1 and 
run the algorithm. 
In a few iterations, 
it finds the 
minimum.
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𝑔 𝑤1, 𝑤2 = 𝑤1
2+𝑤2

2+ 2

We can calculate the partial derivative of 𝑔 𝑤1, 𝑤2

𝜕𝑔
𝜕𝑤1

,
𝜕𝑔
𝜕𝑤2

= [2𝑤1, 2𝑤2]

How should we interpret this?

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a multi-variable function
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𝑔 𝑤1, 𝑤2 = 𝑤1
2+𝑤2

2+ 2

∇𝑔 =
𝜕𝑔
𝜕𝑤1

,
𝜕𝑔
𝜕𝑤2

= [2𝑤1, 2𝑤2]

The first number is the change in g(w) for a small increase in w1, 
with w2 kept unchanged. The second number is the change in 
g(w) for a small increase in w2, with w1 kept unchanged

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a multi-variable function
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𝑔 𝑤1, 𝑤2 = 𝑤1
2+𝑤2

2+ 2

∇𝑔 =
𝜕𝑔
𝜕𝑤1

,
𝜕𝑔
𝜕𝑤2

= [2𝑤1, 2𝑤2]

The first number is the change in g(w) for a small increase in w1, 
with w2 kept unchanged. The second number is the change in 
g(w) for a small increase in w2, with w1 kept unchanged

This is called the “gradient” of 𝑔 𝑤1, 𝑤2 and written as ∇𝑔

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a multi-variable function
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∇𝑔 =
𝜕𝑔
𝜕𝑤1

,
𝜕𝑔
𝜕𝑤2

= [2𝑤1, 2𝑤2]

We can simply do gradient descent on each coordinate by 
using the corresponding partial derivative.

𝑤! ← 𝑤1− 𝛼 (
,-

,.!
) 

𝑤/ ← 𝑤2− 𝛼 (
,-
,."

) 

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

Minimizing a multi-variable function
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∇𝑔 = [2𝑤1, 2𝑤2]

𝑤! ← 𝑤1− 𝛼 (
,-

,.!
) 

𝑤/ ← 𝑤2− 𝛼 (
,-
,."

) 

As before, this whole thing can be summarized compactly as:

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

𝑤	 ← 𝑤 − 𝛼∇𝑔(𝑤)

Minimizing a multi-variable function



Gradient Descent in two dimensions

76

https://kenndanielso.github.io/mlrefined/blog_posts/6_First_order_methods/6_4_Gradient_descent.html

𝑔 𝑤0, 𝑤1 = 𝑤02+ 𝑤12+ 2

Gradient descent figures © Jeremy Watt/neonwatty on GitHub. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

https://ocw.mit.edu/help/faq-fair-use


GD may stop near a local minimum (not necessarily a 
global minimum) or a saddle point but we don’t worry 
about this in practice. 

77



Minimizing a loss function with 
gradient descent

78

Minimize

What are the variables we need to 
change to minimize this function?

1
𝑛
$
&'!

(

−𝑦& log 𝑚𝑜𝑑𝑒𝑙 𝑥& 	− 1 − 𝑦& log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥& )



Minimizing a loss funcPon with 
gradient descent

79

Minimize

What are the variables we need to 
change to minimize this function?

They are the parameters “hiding” 
inside 𝑚𝑜𝑑𝑒𝑙 𝑥!

1
𝑛
$
&'!

(

−𝑦& log 𝑚𝑜𝑑𝑒𝑙 𝑥& 	− 1 − 𝑦& log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥& )



Minimizing a loss function with 
gradient descent

80

Minimize

Recall this model 
and the NN it 
represents

1
𝑛$
&'!

(

−𝑦& log 𝑚𝑜𝑑𝑒𝑙 𝑥& 	− 1 − 𝑦& log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥& )



Minimizing a loss function with 
gradient descent

81

Minimize

w1, w2, …, w13 are the 
variables we can 
change to minimize 
the loss function

The values of x1, x2 and y, on the 
other hand, are just data

1
𝑛
$
&'!

(

−𝑦& log 𝑚𝑜𝑑𝑒𝑙 𝑥& 	− 1 − 𝑦& log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥& )



Minimizing a loss funcPon with 
gradient descent

82

Minimize

Imagine replacing 𝑚𝑜𝑑𝑒𝑙 𝑥!  with the mathematical expression above wherever 
𝑚𝑜𝑑𝑒𝑙 𝑥!  appears in the loss function

Now, your loss function is just a ”good old” function of w1, w2, …, w13 and you can apply 
gradient descent to it as we normally would.

1
𝑛
$
&'!

(

−𝑦& log 𝑚𝑜𝑑𝑒𝑙 𝑥& 	− 1 − 𝑦& log(1 − 𝑚𝑜𝑑𝑒𝑙 𝑥& )



Backpropagation (aka ‘backprop’)

83

• Backpropagation is an efficient way to compute the 
gradient of the loss function

• The efficiency stems from exploiting the layer-by-layer 
architecture of NNs



BackpropagaBon (aka ‘backprop’)

84

• Backpropagation is an efficient way to compute the 
gradient of the loss function

• The efficiency stems from exploiting the layer-by-layer 
architecture of NNs

• By organizing the computation in the form of a 
“computational graph”, we can incrementally calculate the 
gradient one layer at a time using matrix multiplications 
(and other simple operations). This approach also 
eliminates redundant calculations



Backpropagation (aka ‘backprop’)

85

• Backpropagation is an efficient way to compute the gradient of 
the loss function

• The efficiency stems from exploiting the layer-by-layer 
architecture of NNs

• By organizing the computation in the form of a “computational 
graph”, we can incrementally calculate the gradient one layer at 
a time using matrix multiplications (and other simple 
operations). This approach also eliminates redundant 
calculations

• It turns out that Graphic Processing Units (GPUs), originally 
invented to speed up video games, are perfectly suited for 
matrix multiplications!
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• BackpropagaIon is an efficient way to compute the gradient of 
the loss funcIon

• The efficiency stems from exploiIng the layer-by-layer 
architecture of NNs

• By organizing the computaIon in the form of a “computaIonal 
graph”, we can incrementally calculate the gradient one layer at 
a Ime using matrix mulIplicaIons (and other simple 
operaIons). This approach also eliminates redundant 
calculaIons

• It turns out that Graphic Processing Units (GPUs), originally 
invented to speed up video games, are perfectly suited for 
matrix mulIplicaIons!

• Backprop + GPUs è Fast calculaIon of loss funcIon gradients!

Sections 2.4.3 and 2.4.4 of textbook have more detail. Also see HODL-SP24-Lec-2-
Backprop_Example.pdf for a worked-out example
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• Backpropagation is an efficient way to compute the gradient of 
the loss function

• The efficiency stems from exploiting the layer-by-layer 
architecture of NNs

• By organizing the computation in the form of a “computational 
graph”, we can incrementally calculate the gradient one layer at 
a time using matrix multiplications (and other simple 
operations). This approach also eliminates redundant 
calculations

• It turns out that Graphic Processing Units (GPUs), originally 
invented to speed up video games, are perfectly suited for 
matrix multiplications!

• Backprop + GPUs è Fast calculation of loss function gradients!

Sections 2.4.3 and 2.4.4 of textbook have more detail.



Please see HODL-SP24-Lec-2-Backprop_Example.pdf 
for a step-by-step example
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Gradient Descent à StochasEc Gradient Descent
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Making Gradient Descent work with large 
datasets  
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• Problem: For large datasets (e.g., n in the millions), computing the 
gradient of the loss function can be very expensive
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• Problem: For large datasets (e.g., n in the millions), 
computing the gradient of the loss function can be very 
expensive

• The Solution: 
• At each iteration, instead of using all the n data points in the 

calculation of the gradient of the loss function, randomly choose just 
a few of the n observations (called a minibatch) and use only these 
observations to compute the partial derivatives.  

𝑤	 ← 𝑤 − 𝛼∇𝑔(𝑤)
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• Problem: For large datasets (e.g., n in the millions), computing 
the gradient of the loss function can be very expensive

• The Solution: 
• At each iteration, instead of using all the n data points in the 

calculation of the gradient of the loss function, randomly choose just 
a few of the n observations (called a minibatch) and use only these 
observations to compute the partial derivatives.  

• This is called Stochastic Gradient Descent (SGD)*

* Strictly speaking, SGD chooses just one observation. What we are describing here is Minibatch Gradient 
Descent but the term SGD is widely used in the field to describe the latter so we will do the same
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• Problem: For large datasets (e.g., n in the millions), computing the gradient of the 
loss function can be very expensive

• The Solution: 
• At each iteration, instead of using all the n data points in the calculation of the gradient of 

the loss function, randomly choose just a few of the n observations (called a minibatch) 
and use only these observations to compute the partial derivatives.  

• This is called Stochastic Gradient Descent (SGD)

• Because not all n data points are used in the calculation, this only approximates the true 
gradient but nevertheless works well in practice. In fact, because it is only an 
approximation of the true gradient, it can sometimes escape local minima.

• SGD comes in many “flavors” and we will use a flavor called “Adam” as our default in 
HODL



VisualizaPon of an actual DL loss 
funcPon landscape
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https://arxiv.org/pdf/1712.09913.pdf



Summary of overall training flow
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Image: Page 61 of textbook

SGD and its siblings



MIT OpenCourseWare 
https://ocw.mit.edu 

15.773 Hands-on Deep Learning 

Spring 2024 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 




