
  

 

  

        

Lecture 3A 
Lightning Introduction to Keras/TF 

Training a DL Model for a Structured Data
Problem 

15.S04: Hands-on Deep Learning 
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(Recap) Summary of overall training flow 

SGD and its siblings 

Image: Page 61 of textbook (Deep Learning with Python, Francois Chollet, 2nd Edition) 
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(Recap) Gradient Descent vs Stochastic 
Gradient Descent 

• At each iteration, use all data points to calculate the 
gradient of the loss function 

• At each iteration, randomly choose just a few of the data 
points and use only these to compute the gradient of 
the loss function 
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Epochs and Batches 
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What is an epoch? 

Training set 

An epoch is one pass through the full training set. 

But this plays out differently for Gradient Descent vs 
Stochastic Gradient Descent. 
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An epoch in Gradient Descent 

Training set 

• We run every training sample through the 
network to get the predictions 

• We calculate the gradient of the loss 
� ← � − � 

�����(�) 
• We update the parameters �� 

This is done just once at the 
end of the epoch 
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An epoch in Stochastic Gradient Descent 

Training set 

Batch 
1 

Batch 
2 

Batch 
3 

Batch 
4 

Batch 
5 … Batch 

N 

But when we do Stochastic Gradient Descent (SGD), we process 
the data in minibatches*, one after the other 

*we will refer to minibatches as batches from now on for simplicity 7 



  

  
         

   
      
   	

    An epoch in Stochastic Gradient Descent 

Batch 
1 

Batch 
2 

Batch Batch Batch 
3 4 5 

… Batch 
N 

Training set 

For each batch: 
• We run the training samples in that batch through the 

network to get predictions 
• We calculate the gradient of the loss 

� ← � − � 
�����(�) 

• We update the parameters �� 
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Training set 
Batch 

1
Batch 

2
Batch 

3
Batch 

4
Batch 

5
… Batch 

N

𝑤	 ← 𝑤 − 𝛼
𝑑𝐿𝑜𝑠𝑠(𝑤)

𝑑𝑤

𝑤	 ← 𝑤 − 𝛼
𝑑𝐿𝑜𝑠𝑠(𝑤)

𝑑𝑤

𝑤	 ← 𝑤 − 𝛼
𝑑𝐿𝑜𝑠𝑠(𝑤)

𝑑𝑤

𝑤	 ← 𝑤 − 𝛼
𝑑𝐿𝑜𝑠𝑠(𝑤)

𝑑𝑤

...

An epoch in Stochastic Gradient Descent



How many batches in an epoch when 
we do SGD?
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# of batches in one epoch =  (Training set size / Batch size) rounded up

For Neural Heart Disease Model:
Training set size = 194
Batch size = 32
# of batches in one epoch =  (194/32) rounded up = 7

The first 6 batches have 32 samples each, and the 7th batch has the last 2 samples.
32 * 6 + 2 = 194

Batch 
1

Batch 
2

Batch 
3

Batch 
4

Batch 
5

Batch 
6 Batch 7



Overfitting and Regularization
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Recall Underfitting vs. Overfitting
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Model complexity

Training Data

Error



Recall Underfitting vs. Overfitting
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Model complexity

Training set

Error



Recall Underfitting vs. Overfitting
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Model complexity

Validation set

Training set

Error



Recall Underfitting vs. Overfitting
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Model complexity

Validation set

Training set

Error
Underfitting: Model cannot 
capture the richness of the 
data

Overfitting: Model captures 
idiosyncrasies of training 
data

“Sweet spot”
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• To learn smart representations of complex, unstructured 
data, the NN needs to have large “capacity” i.e., many 
layers and many neurons in each layer

• But this raises the likelihood of overfitting so we need to 
add regularization

• Several regularization methods have been developed to 
address this problem

Overfitting in Neural Networks
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Stop the training early before the training loss is minimized by 
monitoring the loss on a validation dataset. 

Iteration
s

Validation set

Training set

Error early
stopping

Regularization strategy: Early Stopping
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Randomly zero out the output from some of the nodes (typically 50% of the nodes) in a hidden layer 
(implemented as a “dropout layer” in Keras)

Regularization strategy: Dropout

Hidden 
layer

Dropout 
layer

Hidden 
layer

We will cover this in Lecture 4



Summary: Creating and training a DNN from 
scratch
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• We get the data ready

• We design i.e., “lay out” the network
• Choose the number of hidden layers and the number of ‘neurons’ in each layer
• Pick the right output layer based on the type of the output (more on this shortly)

• We pick 
• An appropriate loss function based on the type of the output (more on this shortly) 
• An optimizer from the many SGD flavors that are available and a “good” learning rate

• We decide on a regularization strategy

• We set things up in Keras/Tensorflow and start training!



Lightning Intro to Tensorflow/Keras
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What’s a Tensor?
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What’s a Tensor?

42

Tensor of rank 0 ( Scalar)
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What’s a Tensor?

42

(42, 23.4, 11.2)

Tensor of rank 0 ( Scalar)

Tensor of rank 1 (aka Vector)
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What’s a Tensor?

42

(42, 23.4, 11.2)

Tensor of rank 0 ( Scalar)

Tensor of rank 1 (aka Vector)

Tensor of rank 2 (aka Matrix)

Image credit: fast.ai
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What’s a Tensor?

42

(42, 23.4, 11.2)

Tensor of rank 0 ( Scalar)

Tensor of rank 1 (aka Vector)

Tensor of rank 2 (aka Matrix)

Tensor of rank 3 (aka “cube”)

Image credit: fast.ai



Can you give an example of a rank-4 
tensor?
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See Chapter 2.2 of text for more detail

What’s a Tensor?



Tensorflow
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Tensorflow (TF) is a library that provides
• Automatic calculation of the gradient of 

(complicated) loss functions

∇𝐿𝑜𝑠𝑠(𝑤)= !"#$$
!%,

, !"#$$
!%-

, … , !"#$$
!%&



Tensorflow
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Tensorflow (TF) is a library that provides
• Automatic calculation of the gradient of 

(complicated) loss functions
• Library of state-of-the-art optimizers



Tensorflow
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Tensorflow (TF) is a library that provides
• Automatic calculation of the gradient of 

(complicated) loss functions
• Library of state-of-the-art optimizers
• Automatic distribution of computational load across 

servers



Tensorflow
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Tensorflow (TF) is a library that provides
• Automatic calculation of the gradient of 

(complicated) loss functions
• Library of state-of-the-art optimizers
• Automatic distribution of computational load across 

servers
• Automatic adaptation of code to work on parallel 

hardware (GPUs and TPUs)



Keras “sits on top of” Tensorflow …
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Image: Page 70 of textbook



• Pre-defined layers
• Incredibly flexible ways to specify network 

architectures
• Easy ways to preprocess data
• Easy ways to train models and report metrics
• Pre-trained models you can download and 

customize

… and provides “convenience” features
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Keras APIs
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• There are three broad ways to build DL models with Keras
• Sequential
• Functional API
• Subclassing

• We will almost exclusively use the Functional API. The 
model we built for heart disease prediction is an example.

• Please read 7.2.2 of the textbook to understand in detail 
how the Keras Functional API works



Check out the wealth of introductory 
and advanced material, with 
accompanying colabs, at 
tensorflow.org and keras.io
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Input 
Layer Hidden layer 

(16 units)
Output 

layer

Let’s revisit the Neural Model for Heart Disease 
Prediction we designed previously

x1

x29

y

input = keras.Input(shape=29)

h = keras.layers.Dense(16, activation=“relu”)(input)

model = keras.Model(input, output)

output = keras.layers.Dense(1, activation="sigmoid”)(h)
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Let’s train this model!



Training Checklist
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• We get the data ready (will cover in the colab)

• We design i.e., “lay out” the network
• Choose the number of hidden layers and the number of ‘neurons’ in each layer
• Pick the right output layer based on the type of the output

• We pick 
• An appropriate loss function based on the type of the output 
• An optimizer from the many SGD flavors that are available

• We decide on a regularization strategy

• We set things up in Keras/Tensorflow and start training!

1 hidden layer with 16 ReLU neurons

Sigmoid

_______



Training Checklist
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• We get the data ready (will cover in the colab)

• We design i.e., “lay out” the network
• Choose the number of hidden layers and the number of ‘neurons’ in each layer
• Pick the right output layer based on the type of the output

• We pick 
• An appropriate loss function based on the type of the output 
• An optimizer from the many SGD flavors that are available

• We decide on a regularization strategy

• We set things up in Keras/Tensorflow and start training!

1 hidden layer with 16 ReLU neurons

Sigmoid

binary crossentropy



Training Checklist

40

• We get the data ready (will cover in the colab)

• We design i.e., “lay out” the network
• Choose the number of hidden layers and the number of ‘neurons’ in each layer
• Pick the right output layer based on the type of the output

• We pick 
• An appropriate loss function based on the type of the output 
• An optimizer from the many SGD flavors that are available

• We decide on a regularization strategy

• We set things up in Keras/Tensorflow and start training!

1 hidden layer with 16 ReLU neurons

Sigmoid

Early stopping

“adam"
binary crossentropy



Colab
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Predicting Heart Disease

https://colab.research.google.com/drive/1flLafeFpy8JjLN4H_ertcs5wJE3--TdQ?usp=sharing


Before we start coding …
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• Don’t worry if you don’t understand every detail of what 
we will do in class. 

• But go through the Colab notebooks carefully later, play 
around with the code and make sure you understand 
every line 



Colab General Instructions
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Step 2 Request a GPU for your notebook*

Step 3 Start your 
notebook

Step 1 Make your 
own copy of 
the notebook

You need to do steps 1 and 2 just the first time you use a notebook. From the second time onwards, jump to Step 3. 
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