

Lecture 3A
Lightning Introduction to Keras/TF

Training a DL Model for a Structured Data
Problem

15.S04: Hands-on Deep Learning
Spring 2024
Farias, Ramakrishnan

(Recap) Summary of overall training flow

SGD and its siblings

Image: Page 61 of textbook (Deep Learning with Python, Francois Chollet, 2nd Edition)
2

(Recap) Gradient Descent vs Stochastic
Gradient Descent

• At each iteration, use all data points to calculate the
gradient of the loss function

• At each iteration, randomly choose just a few of the data
points and use only these to compute the gradient of
the loss function

3

Epochs and Batches

4

What is an epoch?

Training set

An epoch is one pass through the full training set.

But this plays out differently for Gradient Descent vs
Stochastic Gradient Descent.

5

 	

An epoch in Gradient Descent

Training set

• We run every training sample through the
network to get the predictions

• We calculate the gradient of the loss
� ← � − �

�����(�)
• We update the parameters ��

This is done just once at the
end of the epoch

6

An epoch in Stochastic Gradient Descent

Training set

Batch
1

Batch
2

Batch
3

Batch
4

Batch
5 … Batch

N

But when we do Stochastic Gradient Descent (SGD), we process
the data in minibatches*, one after the other

*we will refer to minibatches as batches from now on for simplicity 7

 	

 An epoch in Stochastic Gradient Descent

Batch
1

Batch
2

Batch Batch Batch
3 4 5

… Batch
N

Training set

For each batch:
• We run the training samples in that batch through the

network to get predictions
• We calculate the gradient of the loss

� ← � − �
�����(�)

• We update the parameters ��

8

9

Training set
Batch

1
Batch

2
Batch

3
Batch

4
Batch

5
… Batch

N

𝑤	 ← 𝑤 − 𝛼
𝑑𝐿𝑜𝑠𝑠(𝑤)

𝑑𝑤

𝑤	 ← 𝑤 − 𝛼
𝑑𝐿𝑜𝑠𝑠(𝑤)

𝑑𝑤

𝑤	 ← 𝑤 − 𝛼
𝑑𝐿𝑜𝑠𝑠(𝑤)

𝑑𝑤

𝑤	 ← 𝑤 − 𝛼
𝑑𝐿𝑜𝑠𝑠(𝑤)

𝑑𝑤

...

An epoch in Stochastic Gradient Descent

How many batches in an epoch when
we do SGD?

10

of batches in one epoch = (Training set size / Batch size) rounded up

For Neural Heart Disease Model:
Training set size = 194
Batch size = 32
of batches in one epoch = (194/32) rounded up = 7

The first 6 batches have 32 samples each, and the 7th batch has the last 2 samples.
32 * 6 + 2 = 194

Batch
1

Batch
2

Batch
3

Batch
4

Batch
5

Batch
6 Batch 7

Overfitting and Regularization

11

Recall Underfitting vs. Overfitting

12

Model complexity

Training Data

Error

Recall Underfitting vs. Overfitting

13

Model complexity

Training set

Error

Recall Underfitting vs. Overfitting

14

Model complexity

Validation set

Training set

Error

Recall Underfitting vs. Overfitting

15

Model complexity

Validation set

Training set

Error
Underfitting: Model cannot
capture the richness of the
data

Overfitting: Model captures
idiosyncrasies of training
data

“Sweet spot”

16

• To learn smart representations of complex, unstructured
data, the NN needs to have large “capacity” i.e., many
layers and many neurons in each layer

• But this raises the likelihood of overfitting so we need to
add regularization

• Several regularization methods have been developed to
address this problem

Overfitting in Neural Networks

17

Stop the training early before the training loss is minimized by
monitoring the loss on a validation dataset.

Iteration
s

Validation set

Training set

Error early
stopping

Regularization strategy: Early Stopping

18

Randomly zero out the output from some of the nodes (typically 50% of the nodes) in a hidden layer
(implemented as a “dropout layer” in Keras)

Regularization strategy: Dropout

Hidden
layer

Dropout
layer

Hidden
layer

We will cover this in Lecture 4

Summary: Creating and training a DNN from
scratch

19

• We get the data ready

• We design i.e., “lay out” the network
• Choose the number of hidden layers and the number of ‘neurons’ in each layer
• Pick the right output layer based on the type of the output (more on this shortly)

• We pick
• An appropriate loss function based on the type of the output (more on this shortly)
• An optimizer from the many SGD flavors that are available and a “good” learning rate

• We decide on a regularization strategy

• We set things up in Keras/Tensorflow and start training!

Lightning Intro to Tensorflow/Keras

20

21

What’s a Tensor?

22

What’s a Tensor?

42

Tensor of rank 0 (Scalar)

23

What’s a Tensor?

42

(42, 23.4, 11.2)

Tensor of rank 0 (Scalar)

Tensor of rank 1 (aka Vector)

24

What’s a Tensor?

42

(42, 23.4, 11.2)

Tensor of rank 0 (Scalar)

Tensor of rank 1 (aka Vector)

Tensor of rank 2 (aka Matrix)

Image credit: fast.ai

25

What’s a Tensor?

42

(42, 23.4, 11.2)

Tensor of rank 0 (Scalar)

Tensor of rank 1 (aka Vector)

Tensor of rank 2 (aka Matrix)

Tensor of rank 3 (aka “cube”)

Image credit: fast.ai

Can you give an example of a rank-4
tensor?

26

27

See Chapter 2.2 of text for more detail

What’s a Tensor?

Tensorflow

28

Tensorflow (TF) is a library that provides
• Automatic calculation of the gradient of

(complicated) loss functions

∇𝐿𝑜𝑠𝑠(𝑤)= !"#$$
!%,

, !"#$$
!%-

, … , !"#$$
!%&

Tensorflow

29

Tensorflow (TF) is a library that provides
• Automatic calculation of the gradient of

(complicated) loss functions
• Library of state-of-the-art optimizers

Tensorflow

30

Tensorflow (TF) is a library that provides
• Automatic calculation of the gradient of

(complicated) loss functions
• Library of state-of-the-art optimizers
• Automatic distribution of computational load across

servers

Tensorflow

31

Tensorflow (TF) is a library that provides
• Automatic calculation of the gradient of

(complicated) loss functions
• Library of state-of-the-art optimizers
• Automatic distribution of computational load across

servers
• Automatic adaptation of code to work on parallel

hardware (GPUs and TPUs)

Keras “sits on top of” Tensorflow …

32

Image: Page 70 of textbook

• Pre-defined layers
• Incredibly flexible ways to specify network

architectures
• Easy ways to preprocess data
• Easy ways to train models and report metrics
• Pre-trained models you can download and

customize

… and provides “convenience” features

33

Keras APIs

34

• There are three broad ways to build DL models with Keras
• Sequential
• Functional API
• Subclassing

• We will almost exclusively use the Functional API. The
model we built for heart disease prediction is an example.

• Please read 7.2.2 of the textbook to understand in detail
how the Keras Functional API works

Check out the wealth of introductory
and advanced material, with
accompanying colabs, at
tensorflow.org and keras.io

35

36

Input
Layer Hidden layer

(16 units)
Output

layer

Let’s revisit the Neural Model for Heart Disease
Prediction we designed previously

x1

x29

y

input = keras.Input(shape=29)

h = keras.layers.Dense(16, activation=“relu”)(input)

model = keras.Model(input, output)

output = keras.layers.Dense(1, activation="sigmoid”)(h)

37

Let’s train this model!

Training Checklist

38

• We get the data ready (will cover in the colab)

• We design i.e., “lay out” the network
• Choose the number of hidden layers and the number of ‘neurons’ in each layer
• Pick the right output layer based on the type of the output

• We pick
• An appropriate loss function based on the type of the output
• An optimizer from the many SGD flavors that are available

• We decide on a regularization strategy

• We set things up in Keras/Tensorflow and start training!

1 hidden layer with 16 ReLU neurons

Sigmoid

Training Checklist

39

• We get the data ready (will cover in the colab)

• We design i.e., “lay out” the network
• Choose the number of hidden layers and the number of ‘neurons’ in each layer
• Pick the right output layer based on the type of the output

• We pick
• An appropriate loss function based on the type of the output
• An optimizer from the many SGD flavors that are available

• We decide on a regularization strategy

• We set things up in Keras/Tensorflow and start training!

1 hidden layer with 16 ReLU neurons

Sigmoid

binary crossentropy

Training Checklist

40

• We get the data ready (will cover in the colab)

• We design i.e., “lay out” the network
• Choose the number of hidden layers and the number of ‘neurons’ in each layer
• Pick the right output layer based on the type of the output

• We pick
• An appropriate loss function based on the type of the output
• An optimizer from the many SGD flavors that are available

• We decide on a regularization strategy

• We set things up in Keras/Tensorflow and start training!

1 hidden layer with 16 ReLU neurons

Sigmoid

Early stopping

“adam"
binary crossentropy

Colab

41

Predicting Heart Disease

https://colab.research.google.com/drive/1flLafeFpy8JjLN4H_ertcs5wJE3--TdQ?usp=sharing

Before we start coding …

42

• Don’t worry if you don’t understand every detail of what
we will do in class.

• But go through the Colab notebooks carefully later, play
around with the code and make sure you understand
every line

Colab General Instructions

43

Step 2 Request a GPU for your notebook*

Step 3 Start your
notebook

Step 1 Make your
own copy of
the notebook

You need to do steps 1 and 2 just the first time you use a notebook. From the second time onwards, jump to Step 3.

MIT OpenCourseWare
https://ocw.mit.edu

15.773 Hands-on Deep Learning

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

