
  

 

    
    

Lecture 4 
Deep Learning for Computer Vision – 
Convolutional Neural Networks and Transfer 
Learning 

15.S04: Hands-on Deep Learning 
Spring 2024 
Farias, Ramakrishnan 



 

     
   
     

  

    

 

Fashion MNIST 

We saw previously that an 
NN with a single hidden 
layer can get to 85% + 
accuracy on this dataset. 

How can we do better? 

Sample of the Fashion MNIST images by Yuzamei. 
Source: Wikimedia Commons. License: CC BY-SA. 

Source: https://www.kaggle.com/datasets/zalando-research/fashionmnist 2 

https://www.kaggle.com/datasets/zalando-research/fashionmnist


  

 
        

 

Handling Images “Naturally” 

• When we flatten the image matrix into a long 
vector and feed it to a dense layer, several 
“undesirable” things happen: 
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Handling Images “Naturally” 

• When we flatten the image matrix into a long 
vector and feed it to a dense layer, several 
“undesirable” things happen: 
• We need to learn “too many” parameters 
• Flattening a 3024 × 3024 – pixel color image (from your 

phone) and connecting to a single 100-neuron dense layer 
generates approximately ? parameters. 
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Handling Images “Naturally” 

• When we flatten the image matrix into a long 
vector and feed it to a dense layer, several 
“undesirable” things happen: 
• We need to learn “too many” parameters 
• Flattening a 3024 × 3024 – pixel color image (from your 

phone) and connecting to a single 100-neuron dense layer 
generates approximately 2.7 billion parameters. 
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Handling Images “Naturally” 

• When we flatten the image matrix into a long 
vector and feed it to a dense layer, several 
“undesirable” things happen: 
• We need to learn “too many” parameters 
• Flattening a 3024 × 3024 – pixel color image (from your 

phone) and connecting to a single 100-neuron dense layer 
generates approximately 2.7 billion parameters. 

• This is computationally demanding, very data-hungry and 
increases the risk of overfitting 
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Handling Images “Naturally” 

• When we flatten the image matrix into a long 
vector and feed it to a dense layer, several 
“undesirable” things happen: 
• We need to learn “too many” parameters 
• We lose the local spatial adjacency relationships between 

pixels that define features of the image. 
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Handling Images “Naturally” 

• When we flatten the image matrix into a long 
vector and feed it to a dense layer, several 
“undesirable” things happen: 
• We need to learn “too many” parameters 
• We lose the local spatial adjacency relationships between 

pixels that define features of the image. 
• We don’t learn once and reuse repeatedly 

• If a feature of the image (e.g., a vertical line or a circle) appears in 
different places in the image, the network should “learn it once and 
use it again and again” rather learn it separately each time. 
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Handling Images “Naturally” 

• When we flatten the image matrix into a long vector 
and feed it to a dense layer, several “undesirable” 
things happen: 
• We need to learn “too many” parameters 
• We lose the local spatial adjacency relationships between pixels that 

define features of the image. 
• We don’t learn once and reuse repeatedly 

• Convolutional layers were developed to address these 
shortcomings 
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 Convolutional Layers 
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Convolutional Layers and Filters 

• A convolutional filter is a 
1 1 1 

small square matrix of 0 0 0 

numbers -1 -1 -1 
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1 1 1

0 0 0

1 0 1

1 0 1

Convolutional Layers and Filters 

• A convolutional filter is a 
1 1 1 

small square matrix of 0 0 0 

-1 -1 -1numbers 

• A convolutional layer is 
composed of one or more 
convolutional filters 

-1 -1 -1 

-

-

1 0 -1 

1 0 -1 

1 0 -1 

1 0 -1 
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The Convolutional Filter 

By choosing the numbers in a filter carefully and “applying” the 
filter to an image, different features of the image can be 
detected (as we will demonstrate shortly) 
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The Convolutional Filter

14

By choosing the numbers in a filter carefully and “applying” the 
filter to an image, different features of the image can be 
detected (as we will demonstrate shortly)

1 1 1

0 0 0

-1 -1 -1

1 0 -1

1 0 -1

1 0 -1

This filter can detect 
horizontal lines!

This filter can detect 
vertical lines



Applying a convolutional filter to an image 
is called the “convolution operation”
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* =

Input OutputFilter



Applying a convolutional filter to an image 
is called the “convolution operation”
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The convolution operation
• “Overlay” the filter onto the top-left of the image

* =

Input OutputFilter



Applying a convolutional filter to an image 
is called the “convolution operation”
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The convolution operation
• “Overlay” the filter onto the top-left of the image
• Multiply matching elements and add up: 

• 0*1 + 0*1 + 0*1 + 5*0 + 5*0 + 5*0 + 10* -1 + 10* -1 + 10*-1 = -30

* =

Input OutputFilter



Applying a convolutional filter to an image 
is called the “convolution operation”

18

The convolution operation
• “Overlay” the filter onto the top-left of the image
• Multiply matching elements and add up: 

• 0*1 + 0*1 + 0*1 + 5*0 + 5*0 + 5*0 + 10* -1 + 10* -1 + 10*-1 = -30
• Run through a ReLU*: max(0, -30) = 0. This number is the top-left cell of 

the output

* =

Input OutputFilter

*strictly speaking, the ReLU isn’t part of the convolution operation but we include it here for convenience



The Convolution Operation

19

Slide the window one step to the right and repeat this 
process to get the second number of the output

* =

Input OutputFilter



The Convolution Operation

20

Slide the window one step to the right and repeat this 
process to get the second number of the output

When done with the first row, move to the start of the 
second row and continue as before …

* =

Input OutputFilter



The Convolution Operation

21

Slide the window one step to the right and repeat this 
process to get the second number of the output

When done with the first row, move to the start of the 
second row and continue as before …

… till you reach the bottom-right corner

* =

Input OutputFilter



By choosing the numbers in a filter carefully and 
applying the convolution operation, different 
features of the image can be detected

22

Switch to HODL-Lec-3-Convolution-Example.xlsx

Optional:

Check out https://setosa.io/ev/image-kernels/ to practice with different filters

https://setosa.io/ev/image-kernels/


Convolutional Layers

23

A convolutional layer is composed of one or 
more convolutional filters 

1 1 1

0 0 0

-1 -1 -1

1 0 -1

1 0 -1

1 0 -1

1 0 -1

1 0 -1

1 0 -1



Convolutional Layers

24

A convolutional layer is composed of one or 
more convolutional filters 

Each filter can be thought of as a specialist for 
detecting a particular feature (e.g., a horizontal 
line, an arc, a vertical line)

1 1 1

0 0 0

-1 -1 -1

1 0 -1

1 0 -1

1 0 -1

1 0 -1

1 0 -1

1 0 -1



Applying a Convolutional Layer to an 
image

25

Input image
Conv layer 
with 2 filters Output



Applying a Convolutional Layer to an 
image
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Input image
Conv layer 
with 2 filters Output



Applying a Convolutional Layer to an 
image
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Input image
Conv layer 
with 2 filters Output



Applying a Convolutional Layer to an 
image

28

Input image
Conv layer 
with 2 filters Output

These two 5x5 matrices 
can be represented as a 
tensor of shape ______?



Applying a Convolutional Layer to an 
image

29

Input image
Conv layer 
with 2 filters Output

These two 5x5 matrices 
can be represented as a 
tensor of shape 5 x 5 x 2  
or 2 x 5 x 5



30Image source: deeplearning.ai

Applying a Convolutional Filter to a 
color image

We know how to apply a convolutional filter to a 2-d tensor (e.g., a grayscale image)

How should we apply a convolutional filter to a rank-3 tensor (e.g., a color image)?
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• We make the filter rank-3 as well and give it the same 
depth as the input

• The other aspects of the convolution operation are 
unchanged

Applying a Convolutional Filter to a 
color image

Image source: deeplearning.ai
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If we had instead applied 2 filters, the output would be a tensor with 
shape 4 x 4 x 2

If we had instead applied f filters, the output would be a tensor with 
shape 4 x 4 x f

Applying a Convolutional Layer to a 
color image

Image source: deeplearning.ai



Please see Chapter 8.1 of the textbook 
for more detail on how convolutional 
filters and layers work

33



The Big Idea

34

• These filters seem excellent but how are we supposed 
to come up with the numbers in each filter?



The Big Idea
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• These filters seem excellent but how are we supposed to come 
up with the numbers in each filter?

• In fact, convolutional filters used to be designed by hand. 
Computer Vision researchers invested a lot of effort in devising 
filters that could detect various types of image features



The Big Idea

36

• These filters seem excellent but how are we supposed to come 
up with the numbers in each filter?

• In fact, convolutional filters used to be designed by hand. 
Computer Vision researchers invested a lot of effort in devising 
filters that could detect various types of image features

• As we figured out how to train deep networks with lots of 
weights, a big idea emerged: think of the numbers in the filter 
as weights and simply learn them from the data, just like we 
learn all the other weights



The Big Idea
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• These filters seem excellent but how are we supposed to come up with 
the numbers in each filter?

• In fact, convolutional filters used to be designed by hand. Computer 
Vision researchers invested a lot of effort in devising filters that could 
detect various types of image features

• As we figured out how to train deep networks with lots of weights, a 
big idea emerged: think of the numbers in the filter as weights and 
simply learn them from the data, just like we learn all the other 
weights
• This is possible because a convolutional filter is just a neuron like we 

saw in previous lectures, albeit a special one (see appendix)



The Big Idea
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• These filters seem excellent but how are we supposed to come up with 
the numbers in each filter?

• In fact, convolutional filters used to be designed by hand. Computer 
Vision researchers invested a lot of effort in devising filters that could 
detect various types of image features

• As we figured out how to train deep networks with lots of weights, a 
big idea emerged: think of the numbers in the filter as weights and 
simply learn them from the data, just like we learn all the other 
weights
• This is possible because a convolutional filter is just a neuron like we 

saw in previous lectures, albeit a special one (see appendix)
• Therefore, our entire machinery – neurons, layers, loss functions, 

gradient descent – is perfectly applicable



The Big Idea
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• These filters seem excellent but how are we supposed to come up 
with the numbers in each filter?

• In fact, convolutional filters used to be designed by hand. 
Computer Vision researchers invested a lot of effort in 
devising filters that could detect various types of image 
features

• As we figured out how to train deep networks with lots of weights, 
a big idea emerged: think of the numbers in the filter as weights 
and simply learn them from the data, just like we learn all the 
other weights

• This turned out to be a turning point in the Computer Vision field 
and led to massive improvements in algorithmic capabilities



Later conv layers “see” more of the 
original input than the earlier layers

40

Image credit: Fig 14-2 from https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646



As a result, a network with many convolutional 
layers can learn increasingly complex features

41

lines =>  edges, circles => faces! 

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations by Lee at al (2009)

Convolutional layers images © Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng. All rights reserved. This 
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

https://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf


Pooling Layers

42



43

Pooling layers (also called down-sampling or subsampling 
layers) reduce the size of the tensor coming out of a 
convolutional layer

Pooling Layers
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Pooling layers (also called down-sampling or subsampling 
layers) reduce the size of the tensor coming out of a 
convolutional layer

Pooling Layers

• In max-pooling, we take the maximum value from each 2x2 box

23 14 0 109

9 43 58 15

105 85 35 25

24 69 17 7

43 109

105 35

2x2 max 
pooling
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Pooling layers (also called down-sampling or subsampling 
layers) reduce the size of the tensor coming out of a 
convolutional layer

Pooling Layers

• In max-pooling, we take the maximum value from each 2x2 box

• In average pooling, we take the average of each 2x2 box

23 14 0 109

9 43 58 15

105 85 35 25

24 69 17 7

2x2 average 
pooling 22.2 45.5

70.75 21
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Pooling layers (also called down-sampling or subsampling 
layers) reduce the size of the tensor coming out of a 
convolutional layer

Pooling Layers

• Reduces the number of entries significantly (e.g., 75% for 2x2 
pooling)

• The output from the pooling layer is fed to the next layer as 
usual

23 14 0 109

9 43 58 15

105 85 35 25

24 69 17 7

22.2 45.5

70.75 21

2x2 average 
pooling



Pooling Layers

47https://cs231n.github.io/convolutional-networks/#conv



Intuition behind max pooling

48

• Max pooling acts like an “OR” condition: if a feature exists
anywhere in its input, max-pooling will pick it up i.e., max-
pooling acts like a feature detector



Intuition behind max pooling
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• Max pooling acts like an “OR” condition: if a feature exists 
anywhere in its input, max-pooling will pick it up i.e., max-
pooling acts like a feature detector

Switch to Notability



Intuition behind max pooling
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• Max pooling acts like an “OR” condition: if a feature exists 
anywhere in its input, max-pooling will pick it up i.e., max-
pooling acts like a feature detector

• Since successive convolutional layers can “see” more and 
more of the original input image, the max-pooling layers 
that follow them can detect if a feature exists in more and 
more of the original input image as well



The Architecture of a Basic CNN

51



The architecture of a basic CNN

52
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

A series of convolutional blocks

Convolutional blocks image by Faisal Alshuwaier, Ali Areshey, Josiah Poon. License: CC BY-NC-ND. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



The architecture of a basic CNN

53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Each convolutional block typically has 1-2 
convolutional layers followed by a pooling layer

Convolutional blocks image by Faisal Alshuwaier, Ali Areshey, Josiah Poon. License: CC BY-NC-ND. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



The architecture of a basic CNN

54
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Each block will typically have more depth than the 
previous block but lower height/width. Compare this 
to this

Convolutional blocks image by Faisal Alshuwaier, Ali Areshey, Josiah Poon. License: CC BY-NC-ND. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



At the end, we flatten the tensor, run it through 
fully-connected layers, and then the output layer

55https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

The final tensor gets flattened into a long 
vector and sent through 0 or more hidden 
layers to the output layer

Convolutional blocks image by Faisal Alshuwaier, Ali Areshey, Josiah Poon. 
License: CC BY-NC-ND. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



Colab: Let’s solve Fashion MNIST with 
Convolutional layers!

56

Link to colab

https://colab.research.google.com/drive/1hN7v4_Yt3E1TpHmH1n7PImFrjDrQ61_t?usp=sharing


Next: We will work with color images

57



Motivating application: A Handbags-Shoes 
Classifier based on less than 100 images!

58

Web-scraped dataset of < 
100 color images of 
handbags and shoes

With this tiny dataset, we 
will build a deep learning 
network to classify your 
shoe or handbag in class 
with high accuracy!

Generic images of handbags and shoes © unknown. All rights reserved. This content is excluded from 
our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Colab: Let’s build a shoes-handbags 
classifier with Convolutional layers!

Link to colab

https://colab.research.google.com/drive/1TJU7ft-IrOOnA2H5s-Uj4oTB8PvZcz-3?usp=sharing


Can we do better? We only have 
100 examples of each class

60



Transfer Learning with Pre-trained 
Networks

61



Transfer learning takes advantage of 
two research trends

62

Trend 1: Researchers have designed NN architectures that are 
well-matched to different types of data. For example:

Type of data Architecture

All Residual connections

Images Convolutional layers

Sequences (e.g., natural 
language, audio, video, gene 
sequences)

Transformers



Transfer learning takes advantage of 
two research trends

63

Trend 1: Researchers have designed NN architectures that are 
well-matched to different types of data. For example:

Type of data Architecture

All Residual connections

Images Convolutional layers

Sequences (e.g., natural 
language, audio, video, gene 
sequences)

Transformers

Trend 2: Using these architectural innovations, researchers have 
trained high-performance DNNs on a variety of large real-world 
datasets. Numerous pretrained models are available!
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Transfer learning involves customizing such a pre-
trained network to your problem, rather than 
designing and training a network from scratch.



65

Handbags and shoes are “everyday objects” and you can look 
around and see if there are any networks that have been trained on 
a dataset of images of “everyday objects” 

Can we apply Transfer Learning to build a 
better Handbags/Shoes Classifier?*

*The first thing to do, of course, is to see if someone has already built such a classifier and put it on GitHub
J
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Handbags and shoes are “everyday objects” and you can look 
around and see if there are any networks that have been trained on 
a dataset of images of “everyday objects” 

Can we apply Transfer Learning to build a 
better Handbags/Shoes Classifier?

Turns out the ImageNet 
dataset has millions of 
images of 1000 categories of 
everyday objects.  We can 
look for networks that have 
been trained on ImageNet

https://www.slideshare.net/xavigiro/image-classification-on-imagenet-d1l4-2017-upc-deep-learning-
for-computer-vision/

ImageNet training image © unknown. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

https://www.slideshare.net/xavigiro/image-classification-on-imagenet-d1l4-2017-upc-deep-learning-for-computer-vision/
https://www.slideshare.net/xavigiro/image-classification-on-imagenet-d1l4-2017-upc-deep-learning-for-computer-vision/


A network trained on ImageNet and that does well on it has 
essentially developed a smart, hierarchical representation 
of these objects across its layers

67https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

ImageNet trained network images © Matthew D. Zeiler and Rob Fergus/Springer. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



68https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

A network trained on ImageNet and that does well on it has 
essentially developed a smart, hierarchical representation 
of these objects across its layers

ImageNet trained network images © Matthew D. Zeiler and Rob Fergus/Springer. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



69https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

A network trained on ImageNet and that does well on it has 
essentially developed a smart, hierarchical representation 
of these objects across its layers

ImageNet trained network images © Matthew D. Zeiler and Rob Fergus/Springer. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



The ResNet family of networks was trained on 
ImageNet and did very well in the associated ImageNet 
competition

70

We’d expect the (learned) weights and biases of ResNet 
layers to embody “knowledge” (like illustrated in the 
previous slides) about the characteristics of the millions of 
everyday images that the network was trained on

ResNet 34*

*https://arxiv.org/abs/1512.03385

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



But we can’t use ResNet as is
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ResNet 34*

*https://arxiv.org/abs/1512.03385

Remember that ResNet was designed to classify the image into 
1000 categories. Our problem is different – we only care about two 
categories: handbags and shoes.

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



So we take ResNet and stop just before the 
last layer

72

ResNet 34

*https://arxiv.org/abs/1512.03385

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



We can run our images through this 
“headless” ResNet

73

ResNet 34

*https://arxiv.org/abs/1512.03385

What comes out here will be a ”smart representation” of the (everyday) 
image that can be used for different kinds of categorization.

Imagine that the image gets ”tagged” with lots of general tags and we 
can use the tags any way we wish.

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



We can think of the output of “headless ResNet” as a smart 
representation of the raw image and use it to train a simple 
one-hidden-layer NN

74
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Input Layer 
= Output of 
“headless” 

ResNet

Hidden layer Output 
layer

x1

xn

Handbag/
Shoe

Since the inputs to the hidden layer are at a higher 
level of abstraction, it may be able to learn to classify 
handbags from shoes with very few examples 

We can think of the output of “headless ResNet” as a smart 
representation of the raw image and use it to train a simple 
one-hidden-layer NN



That’s the basic idea behind transfer 
learning …

76



That’s the basic idea behind transfer 
learning but you can get fancier

77

• You can connect up “headless ResNet” with our little network and train 
the entire network end-to-end. This is called fine-tuning.

• However, you MUST start the training with the weights and biases that 
came with ResNet, rather than start from scratch.

• You will explore this in HW 1



You can find pretrained models in the 
Tensorflow Hub …

https://www.tensorflow.org/hub



… the PyTorch Hub, …

https://pytorch.org/hub/



… and the Hugging Face Hub

https://huggingface.co/models (as of February 13, 2024)

https://huggingface.co/models


Back to Colab

81

Link to colab

https://colab.research.google.com/drive/1TJU7ft-IrOOnA2H5s-Uj4oTB8PvZcz-3?usp=sharing


Appendix

82



The convolutional filter is just a slightly 
modified neuron

83

• A “traditional” neuron (in the first hidden layer) is connected to 
all pixels of the input image. In contrast, a “convolutional filter” 
neuron is connected only to pixels in a small region of the input 
image 

• Sliding the filter across the image ó can be thought of as a 
different filter for each window but with the same weights

• Benefits
• Preserves local adjacency
• Far fewer parameters
• Translation invariance – can detect the same pattern regardless of 

where it appears in an image
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