

Lecture 4
Deep Learning for Computer Vision –
Convolutional Neural Networks and Transfer
Learning

15.S04: Hands-on Deep Learning
Spring 2024
Farias, Ramakrishnan

Fashion MNIST

We saw previously that an
NN with a single hidden
layer can get to 85% +
accuracy on this dataset.

How can we do better?

Sample of the Fashion MNIST images by Yuzamei.
Source: Wikimedia Commons. License: CC BY-SA.

Source: https://www.kaggle.com/datasets/zalando-research/fashionmnist 2

https://www.kaggle.com/datasets/zalando-research/fashionmnist

Handling Images “Naturally”

• When we flatten the image matrix into a long
vector and feed it to a dense layer, several
“undesirable” things happen:

3

  

Handling Images “Naturally”

• When we flatten the image matrix into a long
vector and feed it to a dense layer, several
“undesirable” things happen:
• We need to learn “too many” parameters
• Flattening a 3024 × 3024 – pixel color image (from your

phone) and connecting to a single 100-neuron dense layer
generates approximately ? parameters.

4

  

Handling Images “Naturally”

• When we flatten the image matrix into a long
vector and feed it to a dense layer, several
“undesirable” things happen:
• We need to learn “too many” parameters
• Flattening a 3024 × 3024 – pixel color image (from your

phone) and connecting to a single 100-neuron dense layer
generates approximately 2.7 billion parameters.

5

  

Handling Images “Naturally”

• When we flatten the image matrix into a long
vector and feed it to a dense layer, several
“undesirable” things happen:
• We need to learn “too many” parameters
• Flattening a 3024 × 3024 – pixel color image (from your

phone) and connecting to a single 100-neuron dense layer
generates approximately 2.7 billion parameters.

• This is computationally demanding, very data-hungry and
increases the risk of overfitting

6

Handling Images “Naturally”

• When we flatten the image matrix into a long
vector and feed it to a dense layer, several
“undesirable” things happen:
• We need to learn “too many” parameters
• We lose the local spatial adjacency relationships between

pixels that define features of the image.

7

Handling Images “Naturally”

• When we flatten the image matrix into a long
vector and feed it to a dense layer, several
“undesirable” things happen:
• We need to learn “too many” parameters
• We lose the local spatial adjacency relationships between

pixels that define features of the image.
• We don’t learn once and reuse repeatedly

• If a feature of the image (e.g., a vertical line or a circle) appears in
different places in the image, the network should “learn it once and
use it again and again” rather learn it separately each time.

8

Handling Images “Naturally”

• When we flatten the image matrix into a long vector
and feed it to a dense layer, several “undesirable”
things happen:
• We need to learn “too many” parameters
• We lose the local spatial adjacency relationships between pixels that

define features of the image.
• We don’t learn once and reuse repeatedly

• Convolutional layers were developed to address these
shortcomings

9

 Convolutional Layers

10

Convolutional Layers and Filters

• A convolutional filter is a
1 1 1

small square matrix of 0 0 0

numbers -1 -1 -1

11

1 1 1

0 0 0

1 0 1

1 0 1

Convolutional Layers and Filters

• A convolutional filter is a
1 1 1

small square matrix of 0 0 0

-1 -1 -1numbers

• A convolutional layer is
composed of one or more
convolutional filters

-1 -1 -1

-

-

1 0 -1

1 0 -1

1 0 -1

1 0 -1

12

The Convolutional Filter

By choosing the numbers in a filter carefully and “applying” the
filter to an image, different features of the image can be
detected (as we will demonstrate shortly)

13

The Convolutional Filter

14

By choosing the numbers in a filter carefully and “applying” the
filter to an image, different features of the image can be
detected (as we will demonstrate shortly)

1 1 1

0 0 0

-1 -1 -1

1 0 -1

1 0 -1

1 0 -1

This filter can detect
horizontal lines!

This filter can detect
vertical lines

Applying a convolutional filter to an image
is called the “convolution operation”

15

* =

Input OutputFilter

Applying a convolutional filter to an image
is called the “convolution operation”

16

The convolution operation
• “Overlay” the filter onto the top-left of the image

* =

Input OutputFilter

Applying a convolutional filter to an image
is called the “convolution operation”

17

The convolution operation
• “Overlay” the filter onto the top-left of the image
• Multiply matching elements and add up:

• 0*1 + 0*1 + 0*1 + 5*0 + 5*0 + 5*0 + 10* -1 + 10* -1 + 10*-1 = -30

* =

Input OutputFilter

Applying a convolutional filter to an image
is called the “convolution operation”

18

The convolution operation
• “Overlay” the filter onto the top-left of the image
• Multiply matching elements and add up:

• 0*1 + 0*1 + 0*1 + 5*0 + 5*0 + 5*0 + 10* -1 + 10* -1 + 10*-1 = -30
• Run through a ReLU*: max(0, -30) = 0. This number is the top-left cell of

the output

* =

Input OutputFilter

*strictly speaking, the ReLU isn’t part of the convolution operation but we include it here for convenience

The Convolution Operation

19

Slide the window one step to the right and repeat this
process to get the second number of the output

* =

Input OutputFilter

The Convolution Operation

20

Slide the window one step to the right and repeat this
process to get the second number of the output

When done with the first row, move to the start of the
second row and continue as before …

* =

Input OutputFilter

The Convolution Operation

21

Slide the window one step to the right and repeat this
process to get the second number of the output

When done with the first row, move to the start of the
second row and continue as before …

… till you reach the bottom-right corner

* =

Input OutputFilter

By choosing the numbers in a filter carefully and
applying the convolution operation, different
features of the image can be detected

22

Switch to HODL-Lec-3-Convolution-Example.xlsx

Optional:

Check out https://setosa.io/ev/image-kernels/ to practice with different filters

https://setosa.io/ev/image-kernels/

Convolutional Layers

23

A convolutional layer is composed of one or
more convolutional filters

1 1 1

0 0 0

-1 -1 -1

1 0 -1

1 0 -1

1 0 -1

1 0 -1

1 0 -1

1 0 -1

Convolutional Layers

24

A convolutional layer is composed of one or
more convolutional filters

Each filter can be thought of as a specialist for
detecting a particular feature (e.g., a horizontal
line, an arc, a vertical line)

1 1 1

0 0 0

-1 -1 -1

1 0 -1

1 0 -1

1 0 -1

1 0 -1

1 0 -1

1 0 -1

Applying a Convolutional Layer to an
image

25

Input image
Conv layer
with 2 filters Output

Applying a Convolutional Layer to an
image

26

Input image
Conv layer
with 2 filters Output

Applying a Convolutional Layer to an
image

27

Input image
Conv layer
with 2 filters Output

Applying a Convolutional Layer to an
image

28

Input image
Conv layer
with 2 filters Output

These two 5x5 matrices
can be represented as a
tensor of shape ______?

Applying a Convolutional Layer to an
image

29

Input image
Conv layer
with 2 filters Output

These two 5x5 matrices
can be represented as a
tensor of shape 5 x 5 x 2
or 2 x 5 x 5

30Image source: deeplearning.ai

Applying a Convolutional Filter to a
color image

We know how to apply a convolutional filter to a 2-d tensor (e.g., a grayscale image)

How should we apply a convolutional filter to a rank-3 tensor (e.g., a color image)?

31

• We make the filter rank-3 as well and give it the same
depth as the input

• The other aspects of the convolution operation are
unchanged

Applying a Convolutional Filter to a
color image

Image source: deeplearning.ai

32

If we had instead applied 2 filters, the output would be a tensor with
shape 4 x 4 x 2

If we had instead applied f filters, the output would be a tensor with
shape 4 x 4 x f

Applying a Convolutional Layer to a
color image

Image source: deeplearning.ai

Please see Chapter 8.1 of the textbook
for more detail on how convolutional
filters and layers work

33

The Big Idea

34

• These filters seem excellent but how are we supposed
to come up with the numbers in each filter?

The Big Idea

35

• These filters seem excellent but how are we supposed to come
up with the numbers in each filter?

• In fact, convolutional filters used to be designed by hand.
Computer Vision researchers invested a lot of effort in devising
filters that could detect various types of image features

The Big Idea

36

• These filters seem excellent but how are we supposed to come
up with the numbers in each filter?

• In fact, convolutional filters used to be designed by hand.
Computer Vision researchers invested a lot of effort in devising
filters that could detect various types of image features

• As we figured out how to train deep networks with lots of
weights, a big idea emerged: think of the numbers in the filter
as weights and simply learn them from the data, just like we
learn all the other weights

The Big Idea

37

• These filters seem excellent but how are we supposed to come up with
the numbers in each filter?

• In fact, convolutional filters used to be designed by hand. Computer
Vision researchers invested a lot of effort in devising filters that could
detect various types of image features

• As we figured out how to train deep networks with lots of weights, a
big idea emerged: think of the numbers in the filter as weights and
simply learn them from the data, just like we learn all the other
weights
• This is possible because a convolutional filter is just a neuron like we

saw in previous lectures, albeit a special one (see appendix)

The Big Idea

38

• These filters seem excellent but how are we supposed to come up with
the numbers in each filter?

• In fact, convolutional filters used to be designed by hand. Computer
Vision researchers invested a lot of effort in devising filters that could
detect various types of image features

• As we figured out how to train deep networks with lots of weights, a
big idea emerged: think of the numbers in the filter as weights and
simply learn them from the data, just like we learn all the other
weights
• This is possible because a convolutional filter is just a neuron like we

saw in previous lectures, albeit a special one (see appendix)
• Therefore, our entire machinery – neurons, layers, loss functions,

gradient descent – is perfectly applicable

The Big Idea

39

• These filters seem excellent but how are we supposed to come up
with the numbers in each filter?

• In fact, convolutional filters used to be designed by hand.
Computer Vision researchers invested a lot of effort in
devising filters that could detect various types of image
features

• As we figured out how to train deep networks with lots of weights,
a big idea emerged: think of the numbers in the filter as weights
and simply learn them from the data, just like we learn all the
other weights

• This turned out to be a turning point in the Computer Vision field
and led to massive improvements in algorithmic capabilities

Later conv layers “see” more of the
original input than the earlier layers

40

Image credit: Fig 14-2 from https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646

As a result, a network with many convolutional
layers can learn increasingly complex features

41

lines => edges, circles => faces!

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations by Lee at al (2009)

Convolutional layers images © Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

https://web.eecs.umich.edu/~honglak/icml09-ConvolutionalDeepBeliefNetworks.pdf

Pooling Layers

42

43

Pooling layers (also called down-sampling or subsampling
layers) reduce the size of the tensor coming out of a
convolutional layer

Pooling Layers

44

Pooling layers (also called down-sampling or subsampling
layers) reduce the size of the tensor coming out of a
convolutional layer

Pooling Layers

• In max-pooling, we take the maximum value from each 2x2 box

23 14 0 109

9 43 58 15

105 85 35 25

24 69 17 7

43 109

105 35

2x2 max
pooling

45

Pooling layers (also called down-sampling or subsampling
layers) reduce the size of the tensor coming out of a
convolutional layer

Pooling Layers

• In max-pooling, we take the maximum value from each 2x2 box

• In average pooling, we take the average of each 2x2 box

23 14 0 109

9 43 58 15

105 85 35 25

24 69 17 7

2x2 average
pooling 22.2 45.5

70.75 21

46

Pooling layers (also called down-sampling or subsampling
layers) reduce the size of the tensor coming out of a
convolutional layer

Pooling Layers

• Reduces the number of entries significantly (e.g., 75% for 2x2
pooling)

• The output from the pooling layer is fed to the next layer as
usual

23 14 0 109

9 43 58 15

105 85 35 25

24 69 17 7

22.2 45.5

70.75 21

2x2 average
pooling

Pooling Layers

47https://cs231n.github.io/convolutional-networks/#conv

Intuition behind max pooling

48

• Max pooling acts like an “OR” condition: if a feature exists
anywhere in its input, max-pooling will pick it up i.e., max-
pooling acts like a feature detector

Intuition behind max pooling

49

• Max pooling acts like an “OR” condition: if a feature exists
anywhere in its input, max-pooling will pick it up i.e., max-
pooling acts like a feature detector

Switch to Notability

Intuition behind max pooling

50

• Max pooling acts like an “OR” condition: if a feature exists
anywhere in its input, max-pooling will pick it up i.e., max-
pooling acts like a feature detector

• Since successive convolutional layers can “see” more and
more of the original input image, the max-pooling layers
that follow them can detect if a feature exists in more and
more of the original input image as well

The Architecture of a Basic CNN

51

The architecture of a basic CNN

52
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

A series of convolutional blocks

Convolutional blocks image by Faisal Alshuwaier, Ali Areshey, Josiah Poon. License: CC BY-NC-ND. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

The architecture of a basic CNN

53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Each convolutional block typically has 1-2
convolutional layers followed by a pooling layer

Convolutional blocks image by Faisal Alshuwaier, Ali Areshey, Josiah Poon. License: CC BY-NC-ND. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

The architecture of a basic CNN

54
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Each block will typically have more depth than the
previous block but lower height/width. Compare this
to this

Convolutional blocks image by Faisal Alshuwaier, Ali Areshey, Josiah Poon. License: CC BY-NC-ND. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

At the end, we flatten the tensor, run it through
fully-connected layers, and then the output layer

55https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

The final tensor gets flattened into a long
vector and sent through 0 or more hidden
layers to the output layer

Convolutional blocks image by Faisal Alshuwaier, Ali Areshey, Josiah Poon.
License: CC BY-NC-ND. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Colab: Let’s solve Fashion MNIST with
Convolutional layers!

56

Link to colab

https://colab.research.google.com/drive/1hN7v4_Yt3E1TpHmH1n7PImFrjDrQ61_t?usp=sharing

Next: We will work with color images

57

Motivating application: A Handbags-Shoes
Classifier based on less than 100 images!

58

Web-scraped dataset of <
100 color images of
handbags and shoes

With this tiny dataset, we
will build a deep learning
network to classify your
shoe or handbag in class
with high accuracy!

Generic images of handbags and shoes © unknown. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

59

Colab: Let’s build a shoes-handbags
classifier with Convolutional layers!

Link to colab

https://colab.research.google.com/drive/1TJU7ft-IrOOnA2H5s-Uj4oTB8PvZcz-3?usp=sharing

Can we do better? We only have
100 examples of each class

60

Transfer Learning with Pre-trained
Networks

61

Transfer learning takes advantage of
two research trends

62

Trend 1: Researchers have designed NN architectures that are
well-matched to different types of data. For example:

Type of data Architecture

All Residual connections

Images Convolutional layers

Sequences (e.g., natural
language, audio, video, gene
sequences)

Transformers

Transfer learning takes advantage of
two research trends

63

Trend 1: Researchers have designed NN architectures that are
well-matched to different types of data. For example:

Type of data Architecture

All Residual connections

Images Convolutional layers

Sequences (e.g., natural
language, audio, video, gene
sequences)

Transformers

Trend 2: Using these architectural innovations, researchers have
trained high-performance DNNs on a variety of large real-world
datasets. Numerous pretrained models are available!

64

Transfer learning involves customizing such a pre-
trained network to your problem, rather than
designing and training a network from scratch.

65

Handbags and shoes are “everyday objects” and you can look
around and see if there are any networks that have been trained on
a dataset of images of “everyday objects”

Can we apply Transfer Learning to build a
better Handbags/Shoes Classifier?*

*The first thing to do, of course, is to see if someone has already built such a classifier and put it on GitHub
J

66

Handbags and shoes are “everyday objects” and you can look
around and see if there are any networks that have been trained on
a dataset of images of “everyday objects”

Can we apply Transfer Learning to build a
better Handbags/Shoes Classifier?

Turns out the ImageNet
dataset has millions of
images of 1000 categories of
everyday objects. We can
look for networks that have
been trained on ImageNet

https://www.slideshare.net/xavigiro/image-classification-on-imagenet-d1l4-2017-upc-deep-learning-
for-computer-vision/

ImageNet training image © unknown. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

https://www.slideshare.net/xavigiro/image-classification-on-imagenet-d1l4-2017-upc-deep-learning-for-computer-vision/
https://www.slideshare.net/xavigiro/image-classification-on-imagenet-d1l4-2017-upc-deep-learning-for-computer-vision/

A network trained on ImageNet and that does well on it has
essentially developed a smart, hierarchical representation
of these objects across its layers

67https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

ImageNet trained network images © Matthew D. Zeiler and Rob Fergus/Springer. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

68https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

A network trained on ImageNet and that does well on it has
essentially developed a smart, hierarchical representation
of these objects across its layers

ImageNet trained network images © Matthew D. Zeiler and Rob Fergus/Springer. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

69https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

A network trained on ImageNet and that does well on it has
essentially developed a smart, hierarchical representation
of these objects across its layers

ImageNet trained network images © Matthew D. Zeiler and Rob Fergus/Springer. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

The ResNet family of networks was trained on
ImageNet and did very well in the associated ImageNet
competition

70

We’d expect the (learned) weights and biases of ResNet
layers to embody “knowledge” (like illustrated in the
previous slides) about the characteristics of the millions of
everyday images that the network was trained on

ResNet 34*

*https://arxiv.org/abs/1512.03385

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

But we can’t use ResNet as is

71

ResNet 34*

*https://arxiv.org/abs/1512.03385

Remember that ResNet was designed to classify the image into
1000 categories. Our problem is different – we only care about two
categories: handbags and shoes.

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

So we take ResNet and stop just before the
last layer

72

ResNet 34

*https://arxiv.org/abs/1512.03385

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

We can run our images through this
“headless” ResNet

73

ResNet 34

*https://arxiv.org/abs/1512.03385

What comes out here will be a ”smart representation” of the (everyday)
image that can be used for different kinds of categorization.

Imagine that the image gets ”tagged” with lots of general tags and we
can use the tags any way we wish.

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

We can think of the output of “headless ResNet” as a smart
representation of the raw image and use it to train a simple
one-hidden-layer NN

74

75

Input Layer
= Output of
“headless”

ResNet

Hidden layer Output
layer

x1

xn

Handbag/
Shoe

Since the inputs to the hidden layer are at a higher
level of abstraction, it may be able to learn to classify
handbags from shoes with very few examples

We can think of the output of “headless ResNet” as a smart
representation of the raw image and use it to train a simple
one-hidden-layer NN

That’s the basic idea behind transfer
learning …

76

That’s the basic idea behind transfer
learning but you can get fancier

77

• You can connect up “headless ResNet” with our little network and train
the entire network end-to-end. This is called fine-tuning.

• However, you MUST start the training with the weights and biases that
came with ResNet, rather than start from scratch.

• You will explore this in HW 1

You can find pretrained models in the
Tensorflow Hub …

https://www.tensorflow.org/hub

… the PyTorch Hub, …

https://pytorch.org/hub/

… and the Hugging Face Hub

https://huggingface.co/models (as of February 13, 2024)

https://huggingface.co/models

Back to Colab

81

Link to colab

https://colab.research.google.com/drive/1TJU7ft-IrOOnA2H5s-Uj4oTB8PvZcz-3?usp=sharing

Appendix

82

The convolutional filter is just a slightly
modified neuron

83

• A “traditional” neuron (in the first hidden layer) is connected to
all pixels of the input image. In contrast, a “convolutional filter”
neuron is connected only to pixels in a small region of the input
image

• Sliding the filter across the image ó can be thought of as a
different filter for each window but with the same weights

• Benefits
• Preserves local adjacency
• Far fewer parameters
• Translation invariance – can detect the same pattern regardless of

where it appears in an image

MIT OpenCourseWare
https://ocw.mit.edu

15.773 Hands-on Deep Learning

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

