

The “Deep Learning for NLP” Lecture Roadmap

Lecture 5: Text Vectorization and
the Bag-of-Words Model
Lecture 6: Embeddings
Lecture 7: Transformers – Theory
Lecture 8: Transformers – Applications, Self-Supervised Learning
Lectures 9-10: LLMs

15.S04: Hands-on Deep Learning
Spring 2024
Farias, Ramakrishnan

Why Natural Language Processing (NLP)?

• Human knowledge is (mostly) natural language text

• The Internet is (mostly) natural language text

• Human communication is (mostly) natural language text

• Cultural production is (mostly) natural language text

Imagine if a system could read and “understand” all this automatically

2

NLP is in action all around us

According to Google, Autocomplete
• Saves 200 years of typing time, every day
• Made mobile possible

3

 NLP is in action all around us �

4

NLP has extraordinary potential for
making products and services smarter

5

This seemingly simple capability covers a
vast range of applications

text text NLP

6

Example applications: Text Classification

text LLM Classification of text for
• Sentiment
• Routing
• Intent
• Filtering
• …

7

Example applications: Text Extraction

text NLP

Extract data out from free-
form text
• Company financials

from news article
• Customer name and

contact info from chat
• Disease and medication

codes from doctor’s
notes

• …

8

Example applications: Text Summarization

text NLP

Summarize long-form
text into
• Bullet points
• Abstracts
• Titles
• …

9

Example applications: Text Generation

text NLP

• Marketing copy
• Sales emails
• Market summaries
• Job descriptions
• Social media posts
• College application

essays �
• …

10

Example applications: Code Generation

Code that implements text NLP
the input text

11

Example applications: Question-Answering

Question text
+

Documents
NLP

Chatbots for:
• Medical/legal
• Call centers
• Compliance
• Form filling
• Workflow automation
• …

12

Example applications: Question-Answering

Question text
+

Documents
NLP

Chatbots for:
• Medical/legal
• Call centers
• Compliance
• Form filling
• Workflow automation
• …

13

Example domain: Call Center Optimization

Call center
transcripts

+
Internal
documents,
FAQs etc

NLP

• Top reasons why customers are
upset

• What interventions seem to
work?

• What characterizes the best
support agents vs the rest?

• How should we grade this agent’s
interaction with customer X?

• How should we change the call
center script for a situation?

• How should we coach the agent
in real-time?

• …

14

NLP’s potential is now widely recognized in public
discourse due to the meteoric rise of Large Language
Models

https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard https://www.anthropic.com/index/introducing-claude

Various AI logos © respective copyright holders. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

https://ocw.mit.edu/help/faq-fair-use
https://www.anthropic.com/index/introducing-claude
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

There’s a startup “gold rush” under way to
create NLP based products and services

Enterprise vendors are rushing to add NLP
features to their products

https://www.salesforce.com/news/press-releases/2023/03/07/einstein-generative-ai/

Logo/image of Einstein GPT © Salesforce. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

https://ocw.mit.edu/help/faq-fair-use
https://www.salesforce.com/news/press-releases/2023/03/07/einstein-generative-ai

 The Arc of NLP Progress – How did we get
here?

18

The Arc of NLP Progress

Hand-crated
rules based

on linguistics
(up to early

1990s)

Statistical/ML
(1990s - early

2010s)

Recurrent
Neural

Networks
(2014-2017)

Transformers
(2017 -

Current)

NLP Progress

Hand-crated
rules based

on linguistics
(up to early

1990s)

Statistical/ML
(1990s - early

2010s)

Recurrent
Neural

Networks
(2014-2017)

Transformers
(2017 -

Current)

“Every time I fire a linguist, the performance of
the speech recognizer goes up.”

Frederick Jelinek

NLP Progress

Hand-crated
rules based

on linguistics
(up to early

1990s)

Statistical/ML
(1990s - early

2010s)

Recurrent
Neural

Networks
(2014-2017)

Transformers
(2017 -

Current)

“Every time I fire a linguist, the performance of
the speech recognizer goes up.”

Frederick Jelinek We will leapfrog
to this in HODL!

20,000 Foot View of the Problem

Like most things, fancy regression!

�(�, �) � �

22

20,000 Foot View of the Problem

Like most things, fancy regression!

�(�, �) � �

	

� = text
� = text, labels, numbers, …

� = weights
�(�, �) =A deep neural network

23

20,000 Foot View of the Problem

Like most things, fancy regression!

�(�, �) � �

Key questions:
• How to represent �. We will focus on this today.

24

20,000 Foot View of the Problem

Like most things, fancy regression!

�(�, �) � �

Key questions:
• How to represent �. We will focus on this today.
• (Next week) What NN architecture is best for

processing text?

25

 Processing Basics

26

Basic Pre-Processing

Standardize Tokenize Index Encode

This process is called text vectorization

27

Basic Pre-Processing

Standardize Tokenize Index Encode

We first do these two steps for every
sentence in our training dataset*

*aka “training corpus” 28

Basic Pre-Processing Standardize Tokenize Index Encode

Standardization

• Strip capitalization, often punctuation and accents
(almost always)

• Strip ‘stop words’ e.g., a, the, it, .. (often)

• Stemming (e.g., ate, eaten, eating, eaten > [eats])
(sometimes)

29

Basic Pre-Processing Standardize Tokenize Index Encode

Standardization
• Strip capitalization, often punctuation and accents (almost always)
• Strip ‘stop words’ e.g., a, the, it, .. (often)
• Stemming (e.g., ate, eaten, eating, eaten > [eats]) (sometimes)

hola what do you picture when you [thinks] of [travels] to mexico [sips] real
margarita while [soaks] up sun on laidback beach in puerto vallarta

Hola! What do you picture when you think of traveling to Mexico? Sipping a real
margarita while soaking up the sun on a laid-back beach in Puerto Vallarta?

30

”

Basic Pre-Processing Standardize Tokenize Index Encode

Tokenization
• Typically, split each string on whitespace i.e., each word is a token
• [design choice] decide how many consecutive words make up a token

*Modern LLMs use other tokenization schemes (more on this shortly)
31

Basic Pre-Processing Standardize Tokenize Index Encode

Tokenization
• Typically, split each string on whitespace i.e., each word is a token
• [design choice] decide how many consecutive words make up a

token

hola what do you picture when you [thinks] of [travels] to mexico [sips]
real margarita while [soaks] up sun on laidback beach in puerto vallarta

“hola”, “what”, “do”, “you”, “picture”, “when”, “you”, “[thinks]”,
“of”, ”[travels]”, “to”, “mexico”, “[sips]”, “real”, “margarita”, “while”,
“[soaks]”, “up”, “sun”, “on”, “laidback”, “beach”, “in”, “puerto”, “vallarta”

32

The Standardization and Tokenization
we have described is a good default for
many NLP tasks but there are
disadvantages, especially for text
generation tasks. Modern LLMs use
other schemes (e.g., Byte Pair
Encoding) that we will describe later.

33

Basic Pre-Processing

Standardize Tokenize Index Encode

When this is done for every sentence in our
training dataset, we have a list of distinct tokens
= our vocabulary

34

Basic Pre-Processing

Standardize Tokenize Index Encode

When this is done for every sentence in our training
dataset, we have a list of distinct tokens = our
vocabulary

Now we move to the third and fourth stages. In these
stages, we only work with the vocabulary

35

Basic Pre-Processing Standardize Tokenize Index Encode

Indexing: We assign a unique integer to each distinct
token in the vocabulary

Token Integer

<UNK> 0*

a 1

aardvark 2

…

zebra 50000

*we will come back to this special token later 36

Basic Pre-Processing Standardize Tokenize Index Encode

Encoding: We assign a vector to each integer in our vocabulary

Token Integer Encoding

<UNK> 0* Vector

1 Vector

aardvark 2 Vector

…

a

zebra 50000 Vector

37

Basic Pre-Processing Standardize Tokenize Index Encode

Encoding: We assign a vector to each integer in our vocabulary

• The simplest way to do this is ____________

38

Basic Pre-Processing Standardize Tokenize Index Encode

Encoding: We assign a vector to each integer in our
vocabulary

• The simplest way to do this is one-hot encoding

39

<latexit sha1_base64="ucz7B1QSd8xzB0QmWOVWowxLtQ0=">AAACc3icbVFNSwMxEM2u3+tXVfDiwWAVvFh2RdGj4MWjglWhW0o2O22D2WRJZtWy9A/487z5L7x4N62F6uqDwJv3ZpjJTJJLYTEM3z1/ZnZufmFxKVheWV1br21s3lldGA5NrqU2DwmzIIWCJgqU8JAbYFki4T55vBz5909grNDqFgc5tDPWU6IrOEMndWqvwTGNjej1kRmjn4M4gZ5QZZIxNOJlGNApQhrHP+OoElf9+CnVaKtJ0yAGlU4bBUGnVg8b4Rj0L4kmpE4muO7U3uJU8yIDhVwya1tRmGO7ZAYFlzAM4sJCzvgj60HLUcUysO1yvLMhPXBKSrvauKeQjtWfFSXLrB1kict0I/Zt1RuJ/3mtArvn7VKovEBQ/LtRt5AUNR0dgKbCAEc5cIRxI9yslPeZYRzdmUZLiKpf/kvujhvRaSO8OalfnE3WsUh2yB45JBE5IxfkilyTJuHkw9v2dj3qffo7/p6//53qe5OaLfIL/tEXPI6q8w==</latexit><latexit sha1_base64="7sZErfs3GyV+Z3k9XplQMXd5dv8=">AAACc3ichVFNSwMxEM2u3+tXVfDiwWAVvFh2RdGj4MWjglWhW0o2O22D2WRJZqtl6R/w53nzX3jxbloL1Sr4IPDmzRtmMpPkUlgMwzfPn5mdm19YXAqWV1bX1isbm3dWF4ZDnWupzUPCLEihoI4CJTzkBliWSLhPHi+H+fseGCu0usV+Ds2MdZRoC87QSa3KSxDR2IhOF5kx+imIE+gIVSYZQyOeBwGdwBnj73H4Txz3Uo122jQJYlDppFEQtCrVsBaOQH+TaEyqZIzrVuU1TjUvMlDIJbO2EYU5NktmUHAJgyAuLOSMP7IONBxVLAPbLEc7G9ADp6S0rY17CulI/V5RsszafpY4pxuxa6dzQ/GvXKPA9nmzFCovEBT/atQuJEVNhwegqTDAUfYdYdwINyvlXWYYR3em4RKi6S//JnfHtei0Ft6cVC/OxutYJDtkjxySiJyRC3JFrkmdcPLubXu7HvU+/B1/z9//svreuGaL/IB/9Ak6kqry</latexit> <latexit sha1_base64="Vn72Q0OIjedblS9b3fD/+BWQVpk=">AAACc3icfVFNSwMxEM2u3+tXVfDiwWAVvFh2/UCPghePClaFbinZ7LQNZpMlmVXL0j/gz/Pmv/Di3bQWqlV8EHjzZh4zmUlyKSyG4ZvnT03PzM7NLwSLS8srq5W19VurC8OhzrXU5j5hFqRQUEeBEu5zAyxLJNwlDxeD/N0jGCu0usFeDs2MdZRoC87QSa3KS3BEYyM6XWTG6KcgTqAjVJlkDI147gd0jJDG8X9xNBHHj6lGO2kaBzGodNwoCFqValgLh6C/STQiVTLCVavyGqeaFxko5JJZ24jCHJslMyi4hH4QFxZyxh9YBxqOKpaBbZbDnfXpnlNS2tbGPYV0qH53lCyztpclrtKN2LWTuYH4V65RYPusWQqVFwiKfzVqF5KipoMD0FQY4Ch7jjBuhJuV8i4zjKM702AJ0eSXf5Pbw1p0Uguvj6vnp6N1zJMtskP2SUROyTm5JFekTjh59za9bY96H/6Wv+PvfpX63sizQX7AP/gEPoqq9A==</latexit>

<latexit sha1_base64="8nBetko/Wt1KzTH0XE8zs0PJmn4=">AAAB8HicbVDLSsNAFJ34rPFVdekmWARXJRGlLgtuXFawD2lDmUwm7dB5hJkboYR+hRsXirj1c9z5N07aLLT1wIXDOfdy7z1RypkB3/921tY3Nre2Kzvu7t7+wWH16LhjVKYJbRPFle5F2FDOJG0DA057qaZYRJx2o8lt4XefqDZMyQeYpjQUeCRZwggGKz0OSKzAuK47rNb8uj+Ht0qCktRQidaw+jWIFckElUA4NqYf+CmEOdbACKczd5AZmmIywSPat1RiQU2Yzw+eeedWib1EaVsSvLn6eyLHwpipiGynwDA2y14h/uf1M0huwpzJNAMqyWJRknEPlFd878VMUwJ8agkmmtlbPTLGGhOwGRUhBMsvr5LOZT24rvv3V7Vmo4yjgk7RGbpAAWqgJrpDLdRGBAn0jF7Rm6OdF+fd+Vi0rjnlzAn6A+fzB1A6j2Q=</latexit>

21 3 !

2

666664

0
0
1
...
0

3

777775

Basic Pre-Processing Standardize Tokenize Index Encode

Encoding: We assign a vector to each integer in our
vocabulary

• The simplest way to do this is one-hot encoding
3
0

23
1

2

<UNK>!

777775

0
0
...

666664
a !

777775

1
0
...

666664

· · ·

00

40

<latexit sha1_base64="ucz7B1QSd8xzB0QmWOVWowxLtQ0=">AAACc3icbVFNSwMxEM2u3+tXVfDiwWAVvFh2RdGj4MWjglWhW0o2O22D2WRJZtWy9A/487z5L7x4N62F6uqDwJv3ZpjJTJJLYTEM3z1/ZnZufmFxKVheWV1br21s3lldGA5NrqU2DwmzIIWCJgqU8JAbYFki4T55vBz5909grNDqFgc5tDPWU6IrOEMndWqvwTGNjej1kRmjn4M4gZ5QZZIxNOJlGNApQhrHP+OoElf9+CnVaKtJ0yAGlU4bBUGnVg8b4Rj0L4kmpE4muO7U3uJU8yIDhVwya1tRmGO7ZAYFlzAM4sJCzvgj60HLUcUysO1yvLMhPXBKSrvauKeQjtWfFSXLrB1kict0I/Zt1RuJ/3mtArvn7VKovEBQ/LtRt5AUNR0dgKbCAEc5cIRxI9yslPeZYRzdmUZLiKpf/kvujhvRaSO8OalfnE3WsUh2yB45JBE5IxfkilyTJuHkw9v2dj3qffo7/p6//53qe5OaLfIL/tEXPI6q8w==</latexit><latexit sha1_base64="7sZErfs3GyV+Z3k9XplQMXd5dv8=">AAACc3ichVFNSwMxEM2u3+tXVfDiwWAVvFh2RdGj4MWjglWhW0o2O22D2WRJZqtl6R/w53nzX3jxbloL1Sr4IPDmzRtmMpPkUlgMwzfPn5mdm19YXAqWV1bX1isbm3dWF4ZDnWupzUPCLEihoI4CJTzkBliWSLhPHi+H+fseGCu0usV+Ds2MdZRoC87QSa3KSxDR2IhOF5kx+imIE+gIVSYZQyOeBwGdwBnj73H4Txz3Uo122jQJYlDppFEQtCrVsBaOQH+TaEyqZIzrVuU1TjUvMlDIJbO2EYU5NktmUHAJgyAuLOSMP7IONBxVLAPbLEc7G9ADp6S0rY17CulI/V5RsszafpY4pxuxa6dzQ/GvXKPA9nmzFCovEBT/atQuJEVNhwegqTDAUfYdYdwINyvlXWYYR3em4RKi6S//JnfHtei0Ft6cVC/OxutYJDtkjxySiJyRC3JFrkmdcPLubXu7HvU+/B1/z9//svreuGaL/IB/9Ak6kqry</latexit> <latexit sha1_base64="Vn72Q0OIjedblS9b3fD/+BWQVpk=">AAACc3icfVFNSwMxEM2u3+tXVfDiwWAVvFh2/UCPghePClaFbinZ7LQNZpMlmVXL0j/gz/Pmv/Di3bQWqlV8EHjzZh4zmUlyKSyG4ZvnT03PzM7NLwSLS8srq5W19VurC8OhzrXU5j5hFqRQUEeBEu5zAyxLJNwlDxeD/N0jGCu0usFeDs2MdZRoC87QSa3KS3BEYyM6XWTG6KcgTqAjVJlkDI147gd0jJDG8X9xNBHHj6lGO2kaBzGodNwoCFqValgLh6C/STQiVTLCVavyGqeaFxko5JJZ24jCHJslMyi4hH4QFxZyxh9YBxqOKpaBbZbDnfXpnlNS2tbGPYV0qH53lCyztpclrtKN2LWTuYH4V65RYPusWQqVFwiKfzVqF5KipoMD0FQY4Ch7jjBuhJuV8i4zjKM702AJ0eSXf5Pbw1p0Uguvj6vnp6N1zJMtskP2SUROyTm5JFekTjh59za9bY96H/6Wv+PvfpX63sizQX7AP/gEPoqq9A==</latexit>

<latexit sha1_base64="8nBetko/Wt1KzTH0XE8zs0PJmn4=">AAAB8HicbVDLSsNAFJ34rPFVdekmWARXJRGlLgtuXFawD2lDmUwm7dB5hJkboYR+hRsXirj1c9z5N07aLLT1wIXDOfdy7z1RypkB3/921tY3Nre2Kzvu7t7+wWH16LhjVKYJbRPFle5F2FDOJG0DA057qaZYRJx2o8lt4XefqDZMyQeYpjQUeCRZwggGKz0OSKzAuK47rNb8uj+Ht0qCktRQidaw+jWIFckElUA4NqYf+CmEOdbACKczd5AZmmIywSPat1RiQU2Yzw+eeedWib1EaVsSvLn6eyLHwpipiGynwDA2y14h/uf1M0huwpzJNAMqyWJRknEPlFd878VMUwJ8agkmmtlbPTLGGhOwGRUhBMsvr5LOZT24rvv3V7Vmo4yjgk7RGbpAAWqgJrpDLdRGBAn0jF7Rm6OdF+fd+Vi0rjnlzAn6A+fzB1A6j2Q=</latexit>

21 3 !

2

666664

0
0
1
...
0

3

777775

Basic Pre-Processing Standardize Tokenize Index Encode

Encoding: We assign a vector to each integer in our vocabulary

• The simplest way to do this is one-hot encoding

3
0

23
1

2

<UNK>!

777775

0
0
...

666664
a !

777775

1
0
...

666664

· · ·

00

• Dimension of encoding vector = # of distinct tokens in the text

41

<latexit sha1_base64="ucz7B1QSd8xzB0QmWOVWowxLtQ0=">AAACc3icbVFNSwMxEM2u3+tXVfDiwWAVvFh2RdGj4MWjglWhW0o2O22D2WRJZtWy9A/487z5L7x4N62F6uqDwJv3ZpjJTJJLYTEM3z1/ZnZufmFxKVheWV1br21s3lldGA5NrqU2DwmzIIWCJgqU8JAbYFki4T55vBz5909grNDqFgc5tDPWU6IrOEMndWqvwTGNjej1kRmjn4M4gZ5QZZIxNOJlGNApQhrHP+OoElf9+CnVaKtJ0yAGlU4bBUGnVg8b4Rj0L4kmpE4muO7U3uJU8yIDhVwya1tRmGO7ZAYFlzAM4sJCzvgj60HLUcUysO1yvLMhPXBKSrvauKeQjtWfFSXLrB1kict0I/Zt1RuJ/3mtArvn7VKovEBQ/LtRt5AUNR0dgKbCAEc5cIRxI9yslPeZYRzdmUZLiKpf/kvujhvRaSO8OalfnE3WsUh2yB45JBE5IxfkilyTJuHkw9v2dj3qffo7/p6//53qe5OaLfIL/tEXPI6q8w==</latexit><latexit sha1_base64="7sZErfs3GyV+Z3k9XplQMXd5dv8=">AAACc3ichVFNSwMxEM2u3+tXVfDiwWAVvFh2RdGj4MWjglWhW0o2O22D2WRJZqtl6R/w53nzX3jxbloL1Sr4IPDmzRtmMpPkUlgMwzfPn5mdm19YXAqWV1bX1isbm3dWF4ZDnWupzUPCLEihoI4CJTzkBliWSLhPHi+H+fseGCu0usV+Ds2MdZRoC87QSa3KSxDR2IhOF5kx+imIE+gIVSYZQyOeBwGdwBnj73H4Txz3Uo122jQJYlDppFEQtCrVsBaOQH+TaEyqZIzrVuU1TjUvMlDIJbO2EYU5NktmUHAJgyAuLOSMP7IONBxVLAPbLEc7G9ADp6S0rY17CulI/V5RsszafpY4pxuxa6dzQ/GvXKPA9nmzFCovEBT/atQuJEVNhwegqTDAUfYdYdwINyvlXWYYR3em4RKi6S//JnfHtei0Ft6cVC/OxutYJDtkjxySiJyRC3JFrkmdcPLubXu7HvU+/B1/z9//svreuGaL/IB/9Ak6kqry</latexit> <latexit sha1_base64="Vn72Q0OIjedblS9b3fD/+BWQVpk=">AAACc3icfVFNSwMxEM2u3+tXVfDiwWAVvFh2/UCPghePClaFbinZ7LQNZpMlmVXL0j/gz/Pmv/Di3bQWqlV8EHjzZh4zmUlyKSyG4ZvnT03PzM7NLwSLS8srq5W19VurC8OhzrXU5j5hFqRQUEeBEu5zAyxLJNwlDxeD/N0jGCu0usFeDs2MdZRoC87QSa3KS3BEYyM6XWTG6KcgTqAjVJlkDI147gd0jJDG8X9xNBHHj6lGO2kaBzGodNwoCFqValgLh6C/STQiVTLCVavyGqeaFxko5JJZ24jCHJslMyi4hH4QFxZyxh9YBxqOKpaBbZbDnfXpnlNS2tbGPYV0qH53lCyztpclrtKN2LWTuYH4V65RYPusWQqVFwiKfzVqF5KipoMD0FQY4Ch7jjBuhJuV8i4zjKM702AJ0eSXf5Pbw1p0Uguvj6vnp6N1zJMtskP2SUROyTm5JFekTjh59za9bY96H/6Wv+PvfpX63sizQX7AP/gEPoqq9A==</latexit>

<latexit sha1_base64="8nBetko/Wt1KzTH0XE8zs0PJmn4=">AAAB8HicbVDLSsNAFJ34rPFVdekmWARXJRGlLgtuXFawD2lDmUwm7dB5hJkboYR+hRsXirj1c9z5N07aLLT1wIXDOfdy7z1RypkB3/921tY3Nre2Kzvu7t7+wWH16LhjVKYJbRPFle5F2FDOJG0DA057qaZYRJx2o8lt4XefqDZMyQeYpjQUeCRZwggGKz0OSKzAuK47rNb8uj+Ht0qCktRQidaw+jWIFckElUA4NqYf+CmEOdbACKczd5AZmmIywSPat1RiQU2Yzw+eeedWib1EaVsSvLn6eyLHwpipiGynwDA2y14h/uf1M0huwpzJNAMqyWJRknEPlFd878VMUwJ8agkmmtlbPTLGGhOwGRUhBMsvr5LOZT24rvv3V7Vmo4yjgk7RGbpAAWqgJrpDLdRGBAn0jF7Rm6OdF+fd+Vi0rjnlzAn6A+fzB1A6j2Q=</latexit>

21 3 !

2

666664

0
0
1
...
0

3

777775

Basic Pre-Processing Standardize Tokenize Index Encode

Encoding: We assign a vector to each integer in our vocabulary
• The simplest way to do this is one-hot encoding

3
0

23
1

2

<UNK>!

777775

0
0
...

666664
a !

777775

1
0
...

666664

· · ·

00

• Dimension of encoding vector = # of distinct tokens in the text +
one for <UNK>

42

<latexit sha1_base64="ucz7B1QSd8xzB0QmWOVWowxLtQ0=">AAACc3icbVFNSwMxEM2u3+tXVfDiwWAVvFh2RdGj4MWjglWhW0o2O22D2WRJZtWy9A/487z5L7x4N62F6uqDwJv3ZpjJTJJLYTEM3z1/ZnZufmFxKVheWV1br21s3lldGA5NrqU2DwmzIIWCJgqU8JAbYFki4T55vBz5909grNDqFgc5tDPWU6IrOEMndWqvwTGNjej1kRmjn4M4gZ5QZZIxNOJlGNApQhrHP+OoElf9+CnVaKtJ0yAGlU4bBUGnVg8b4Rj0L4kmpE4muO7U3uJU8yIDhVwya1tRmGO7ZAYFlzAM4sJCzvgj60HLUcUysO1yvLMhPXBKSrvauKeQjtWfFSXLrB1kict0I/Zt1RuJ/3mtArvn7VKovEBQ/LtRt5AUNR0dgKbCAEc5cIRxI9yslPeZYRzdmUZLiKpf/kvujhvRaSO8OalfnE3WsUh2yB45JBE5IxfkilyTJuHkw9v2dj3qffo7/p6//53qe5OaLfIL/tEXPI6q8w==</latexit><latexit sha1_base64="7sZErfs3GyV+Z3k9XplQMXd5dv8=">AAACc3ichVFNSwMxEM2u3+tXVfDiwWAVvFh2RdGj4MWjglWhW0o2O22D2WRJZqtl6R/w53nzX3jxbloL1Sr4IPDmzRtmMpPkUlgMwzfPn5mdm19YXAqWV1bX1isbm3dWF4ZDnWupzUPCLEihoI4CJTzkBliWSLhPHi+H+fseGCu0usV+Ds2MdZRoC87QSa3KSxDR2IhOF5kx+imIE+gIVSYZQyOeBwGdwBnj73H4Txz3Uo122jQJYlDppFEQtCrVsBaOQH+TaEyqZIzrVuU1TjUvMlDIJbO2EYU5NktmUHAJgyAuLOSMP7IONBxVLAPbLEc7G9ADp6S0rY17CulI/V5RsszafpY4pxuxa6dzQ/GvXKPA9nmzFCovEBT/atQuJEVNhwegqTDAUfYdYdwINyvlXWYYR3em4RKi6S//JnfHtei0Ft6cVC/OxutYJDtkjxySiJyRC3JFrkmdcPLubXu7HvU+/B1/z9//svreuGaL/IB/9Ak6kqry</latexit> <latexit sha1_base64="Vn72Q0OIjedblS9b3fD/+BWQVpk=">AAACc3icfVFNSwMxEM2u3+tXVfDiwWAVvFh2/UCPghePClaFbinZ7LQNZpMlmVXL0j/gz/Pmv/Di3bQWqlV8EHjzZh4zmUlyKSyG4ZvnT03PzM7NLwSLS8srq5W19VurC8OhzrXU5j5hFqRQUEeBEu5zAyxLJNwlDxeD/N0jGCu0usFeDs2MdZRoC87QSa3KS3BEYyM6XWTG6KcgTqAjVJlkDI147gd0jJDG8X9xNBHHj6lGO2kaBzGodNwoCFqValgLh6C/STQiVTLCVavyGqeaFxko5JJZ24jCHJslMyi4hH4QFxZyxh9YBxqOKpaBbZbDnfXpnlNS2tbGPYV0qH53lCyztpclrtKN2LWTuYH4V65RYPusWQqVFwiKfzVqF5KipoMD0FQY4Ch7jjBuhJuV8i4zjKM702AJ0eSXf5Pbw1p0Uguvj6vnp6N1zJMtskP2SUROyTm5JFekTjh59za9bY96H/6Wv+PvfpX63sizQX7AP/gEPoqq9A==</latexit>

<latexit sha1_base64="8nBetko/Wt1KzTH0XE8zs0PJmn4=">AAAB8HicbVDLSsNAFJ34rPFVdekmWARXJRGlLgtuXFawD2lDmUwm7dB5hJkboYR+hRsXirj1c9z5N07aLLT1wIXDOfdy7z1RypkB3/921tY3Nre2Kzvu7t7+wWH16LhjVKYJbRPFle5F2FDOJG0DA057qaZYRJx2o8lt4XefqDZMyQeYpjQUeCRZwggGKz0OSKzAuK47rNb8uj+Ht0qCktRQidaw+jWIFckElUA4NqYf+CmEOdbACKczd5AZmmIywSPat1RiQU2Yzw+eeedWib1EaVsSvLn6eyLHwpipiGynwDA2y14h/uf1M0huwpzJNAMqyWJRknEPlFd878VMUwJ8agkmmtlbPTLGGhOwGRUhBMsvr5LOZT24rvv3V7Vmo4yjgk7RGbpAAWqgJrpDLdRGBAn0jF7Rm6OdF+fd+Vi0rjnlzAn6A+fzB1A6j2Q=</latexit>

21 3 !

2

666664

0
0
1
...
0

3

777775

Basic Pre-Processing Standardize Tokenize Index Encode

Encoding: We assign a vector to each integer in our vocabulary
• The simplest way to do this is one-hot encoding

3
0

23
1

2

<UNK>!

777775

0
0
...

666664
a !

777775

1
0
...

666664

· · ·

00

• Dimension of encoding vector = # of distinct tokens in the text + one
for <UNK>

• This is called the “vocabulary” size

43

Basic Pre-Processing

Standardize Tokenize Index Encode

At this point,
• we have created a vocabulary from the training

corpus and
• every distinct token in our vocabulary has been

assigned a one-hot vector.
We are done with basic preprocessing.

44

Next: How to get a new input sentence*
ready to be “fed” into a DNN

*document = sentence = string 45

Next: How to get a new input sentence
ready to be “fed” into a DNN

• Let’s say we have completed STIE* on the training corpus and our
vocabulary size is 100.

*change to lowercase, strip punctuation, leave stop words as is, no stemming 46

Next: How to get a new input sentence
ready to be “fed” into a DNN

• Let’s say we have completed STIE on the training corpus and our
vocabulary size is 100.

• This input text string arrives - “The cat sat on the mat” – and we
run it through STIE

Standardize Tokenize Index Encode
“The cat sat
on the mat”

47

Next: How to get a new input sentence
ready to be “fed” into a DNN

• Let’s say we have completed STIE on the training corpus and our
vocabulary size is 100.

• This input text string arrives - “The cat sat on the mat” – and we
run it through STIE

Standardize Tokenize Index Encode
“The cat sat
on the mat”

• The output is a table with A rows and B columns. What are A and B?

48

Next: How to get a new input sentence
ready to be “fed” into a DNN

• Let’s say we have completed STIE on the training corpus and our
vocabulary size is 100.

• This input text string arrives - “The cat sat on the mat” – and we
run it through STIE

Standardize Tokenize Index Encode
“The cat sat
on the mat”

• The output is a 6 x 100 table.

49

How to get a new input sentence ready
to be “fed” into a DNN

The output table*

*Not showing 0s to avoid clutter 50

How to get a new input sentence ready
to be “fed” into a DNN

• What’s the best way to “feed” this 6 x 100 table of numbers to a
DNN?

51

How to get a new input sentence ready
to be “fed” into a DNN

• What’s the best way to “feed” this 6 x 100 table of numbers to a
DNN?

• Can we send this table as-is into a DNN?

52

How to get a new input sentence ready
to be “fed” into a DNN

• What’s the best way to “feed” this 8 x 100 table of numbers to a
DNN?

• Can we send this table as-is into a DNN?

• A complication: Each incoming sentence may have a different
number of words i.e.. may have varying length. It will be nice to
have a fixed-length input

53

How to get a new input sentence ready
to be “fed” into a DNN

• What’s the best way to “feed” this 8 x 100 table of numbers to a
DNN?

• Can we send this table as-is into a DNN?

• A complication: Each incoming sentence may have a different
number of words i.e.. may have varying length. It will be nice to
have a fixed-length input

• What if we “aggregate” the vectors?

54

How to get a new input sentence ready
to be “fed” into a DNN

• What’s the best way to “feed” this 8 x 100 table of numbers to a
DNN?

• Can we send this table as-is into a DNN?

• A complication: Each incoming sentence may have a different
number of words i.e.. may have varying length. It will be nice to
have a fixed-length input

• What if we “aggregate” the vectors?
• Sum the vectors. This is called “count encoding”
• “OR” the vectors. This is called “multi-hot encoding”

55

 Example: Count and Multi-hot Encoding

56

How to get a new input sentence ready
to be “fed” into a DNN

• What’s the best way to “feed” this 8 x 100 table of numbers to a
DNN?

• Can we send this table as-is into a DNN?

• A complication: Each incoming sentence may have a different
number of words i.e.. may have varying length. It will be nice to
have a fixed-length input

• What if we “aggregate” the vectors?
• Sum the vectors. This is called “count encoding”
• “OR” the vectors. This is called “multi-hot encoding”

• This aggregation approach is called the Bag of Words model

57

Does the Bag of Words approach have
any shortcomings?

58

Does the Bag of Words approach have
any shortcomings?

• We lose the meaning inherent in the order of the words
(i.e., we lose “sequentiality”)

59

Does the Bag of Words approach have
any shortcomings?

• We lose the meaning inherent in the order of the words
(i.e., we lose “sequentiality”)

• If the vocabulary is very long, each input – regardless of its
number of tokens – will be a vector that’s as long as the size
of the vocabulary.

60

Does the Bag of Words approach have
any shortcomings?

• We lose the meaning inherent in the order of the words
(i.e., we lose “sequentiality”)

• If the vocabulary is very long, each input – regardless of its
number of tokens – will be a vector that’s as long as the size
of the vocabulary.
• This can be somewhat mitigated by choosing only the

most-frequent words
• Nevertheless, this increases the number of weights the

model has to learn and thus also the compute time and
the risk of overfitting.

61

 Task For NLP 1

62

Application: Genre Prediction

I grew up on the crime side, the New York Times side
Stayin' alive was no jive
Had secondhands, Mom's bounced on old man
So then we moved to Shaolin land

I walked through the door with you
The air was cold
But something about it felt like home somehow
And I, left my scarf there at your sisters house

Can you classify each verse above into hip-hop, rock or pop?

63

What’s the simplest NN-based
classifier we can build?
Blackboard

64

What’s the simplest NN-based
classifier we can build?

65

Colab
(text pre-processing, bag-of-words and bigrams)

Link to Colab

66

https://colab.research.google.com/drive/1u-6wjRZKvZWV1p2OFFF_NMI-bW9gYKuf?usp=sharing

MIT OpenCourseWare
https://ocw.mit.edu

15.773 Hands-on Deep Learning

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

