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Why Natural Language Processing (NLP)? 

• Human knowledge is (mostly) natural language text 

• The Internet is (mostly) natural language text 

• Human communication is (mostly) natural language text 

• Cultural production is (mostly) natural language text 

Imagine if a system could read and “understand” all this automatically 
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NLP is in action all around us 

According to Google, Autocomplete 
• Saves 200 years of typing time, every day 
• Made mobile possible 
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 NLP is in action all around us � 

4 



   
    

NLP has extraordinary potential for 
making products and services smarter 
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This seemingly simple capability covers a 
vast range of applications 

text text NLP 
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Example applications: Text Classification 

text LLM Classification of text for 
• Sentiment 
• Routing 
• Intent 
• Filtering 
• … 
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Example applications: Text Extraction 

text NLP 

Extract data out from free-
form text 
• Company financials 

from news article 
• Customer name and 

contact info from chat 
• Disease and medication 

codes from doctor’s 
notes 

• … 
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Example applications: Text Summarization 

text NLP 

Summarize long-form 
text into 
• Bullet points 
• Abstracts 
• Titles 
• … 
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Example applications: Text Generation 

text NLP 

• Marketing copy 
• Sales emails 
• Market summaries 
• Job descriptions 
• Social media posts 
• College application 

essays � 
• … 
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Example applications: Code Generation 

Code that implements text NLP 
the input text 
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Example applications: Question-Answering 

Question text 
+ 

Documents 
NLP 

Chatbots for: 
• Medical/legal 
• Call centers 
• Compliance 
• Form filling 
• Workflow automation 
• … 
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Example domain: Call Center Optimization 

Call center 
transcripts 

+ 
Internal 
documents, 
FAQs etc 

NLP 

• Top reasons why customers are 
upset 

• What interventions seem to 
work? 

• What characterizes the best 
support agents vs the rest? 

• How should we grade this agent’s 
interaction with customer X? 

• How should we change the call 
center script for a situation? 

• How should we coach the agent 
in real-time? 

• … 
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NLP’s potential is now widely recognized in public 
discourse due to the meteoric rise of Large Language 
Models 

https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard https://www.anthropic.com/index/introducing-claude 

Various AI logos © respective copyright holders. All rights reserved. This content is excluded from 
our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 

https://ocw.mit.edu/help/faq-fair-use
https://www.anthropic.com/index/introducing-claude
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard


       
  

There’s a startup “gold rush” under way to 
create NLP based products and services 



      
  

  

Enterprise vendors are rushing to add NLP 
features to their products 

https://www.salesforce.com/news/press-releases/2023/03/07/einstein-generative-ai/ 

Logo/image of Einstein GPT © Salesforce. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 

https://ocw.mit.edu/help/faq-fair-use
https://www.salesforce.com/news/press-releases/2023/03/07/einstein-generative-ai


      The Arc of NLP Progress – How did we get 
here? 
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The Arc of NLP Progress 

Hand-crated 
rules based 

on linguistics 
(up to early 

1990s) 

Statistical/ML 
(1990s - early 

2010s) 

Recurrent 
Neural 

Networks 
(2014-2017) 

Transformers 
(2017 -

Current) 
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NLP Progress 

Hand-crated 
rules based 

on linguistics 
(up to early 

1990s) 

Statistical/ML 
(1990s - early 

2010s) 

Recurrent 
Neural 

Networks 
(2014-2017) 

Transformers 
(2017 -

Current) 

“Every time I fire a linguist, the performance of 
the speech recognizer goes up.” 

Frederick Jelinek We will leapfrog 
to this in HODL! 



20,000 Foot View of the Problem 

Like most things, fancy regression! 

�(�, �) � � 
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20,000 Foot View of the Problem 

Like most things, fancy regression! 

�(�, �) � � 

     

	
  

� = text 
� = text, labels, numbers, … 

� = weights 
�(�, �) =A deep neural network 
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20,000 Foot View of the Problem 

Like most things, fancy regression! 

�(�, �) � � 

     

 
      

Key questions: 
• How to represent �. We will focus on this today. 
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20,000 Foot View of the Problem 

Like most things, fancy regression! 
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Key questions: 
• How to represent �. We will focus on this today. 
• (Next week) What NN architecture is best for 

processing text? 
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 Processing Basics 
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Basic Pre-Processing 

Standardize Tokenize Index Encode 

This process is called text vectorization 
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Basic Pre-Processing 

Standardize Tokenize Index Encode 

We first do these two steps for every 
sentence in our training dataset* 

*aka “training corpus” 28 



 

     
 

   

    

Basic Pre-Processing Standardize Tokenize Index Encode 

Standardization 

• Strip capitalization, often punctuation and accents 
(almost always) 

• Strip ‘stop words’ e.g., a, the, it, .. (often) 

• Stemming (e.g., ate, eaten, eating, eaten > [eats]) 
(sometimes) 
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Basic Pre-Processing Standardize Tokenize Index Encode 

Standardization 
• Strip capitalization, often punctuation and accents (almost always) 
• Strip ‘stop words’ e.g., a, the, it, .. (often) 
• Stemming (e.g., ate, eaten, eating, eaten > [eats]) (sometimes) 

hola what do you picture when you [thinks] of [travels] to mexico [sips] real
margarita while [soaks] up sun on laidback beach in puerto vallarta 

Hola! What do you picture when you think of traveling to Mexico? Sipping a real
margarita while soaking up the sun on a laid-back beach in Puerto Vallarta? 
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Basic Pre-Processing Standardize Tokenize Index Encode 

Tokenization 
• Typically, split each string on whitespace i.e., each word is a token 
• [design choice] decide how many consecutive words make up a token 

*Modern LLMs use other tokenization schemes (more on this shortly) 
31 



 

         
         

 

         
          

 

Basic Pre-Processing Standardize Tokenize Index Encode 

Tokenization 
• Typically, split each string on whitespace i.e., each word is a token 
• [design choice] decide how many consecutive words make up a 

token 

hola what do you picture when you [thinks] of [travels] to mexico [sips] 
real margarita while [soaks] up sun on laidback beach in puerto vallarta 

“hola”, “what”, “do”, “you”, “picture”, “when”, “you”, “[thinks]”, 
“of”, ”[travels]”, “to”, “mexico”, “[sips]”, “real”, “margarita”, “while”, 
“[soaks]”, “up”, “sun”, “on”, “laidback”, “beach”, “in”, “puerto”, “vallarta” 
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The Standardization and Tokenization 
we have described is a good default for 
many NLP tasks but there are 
disadvantages, especially for text 
generation tasks. Modern LLMs use 
other schemes (e.g., Byte Pair 
Encoding) that we will describe later. 
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Basic Pre-Processing 

Standardize Tokenize Index Encode 

When this is done for every sentence in our 
training dataset, we have a list of distinct tokens 
= our vocabulary 
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Basic Pre-Processing 

Standardize Tokenize Index Encode 

When this is done for every sentence in our training 
dataset, we have a list of distinct tokens = our 
vocabulary 

Now we move to the third and fourth stages. In these 
stages, we only work with the vocabulary 

35 



Basic Pre-Processing Standardize Tokenize Index Encode 

Indexing: We assign a unique integer to each distinct 
token in the vocabulary 

Token Integer 

 

      
   

      

<UNK> 0* 

a 1 

aardvark 2 

… 

zebra 50000 

*we will come back to this special token later 36 



Basic Pre-Processing Standardize Tokenize Index Encode 

Encoding: We assign a vector to each integer in our vocabulary 

Token Integer Encoding 

<UNK> 0* Vector 

1 Vector 

aardvark 2 Vector 

… 

 

     

 

a 

zebra 50000 Vector 
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Basic Pre-Processing Standardize Tokenize Index Encode 

Encoding: We assign a vector to each integer in our vocabulary 

• The simplest way to do this is ____________ 
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Basic Pre-Processing Standardize Tokenize Index Encode 

Encoding: We assign a vector to each integer in our 
vocabulary 

• The simplest way to do this is one-hot encoding 
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Basic Pre-Processing Standardize Tokenize Index Encode 

Encoding: We assign a vector to each integer in our vocabulary 

• The simplest way to do this is one-hot encoding 
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• Dimension of encoding vector = # of distinct tokens in the text 
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Encoding: We assign a vector to each integer in our vocabulary 
• The simplest way to do this is one-hot encoding 
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• Dimension of encoding vector = # of distinct tokens in the text + 
one for <UNK> 
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Encoding: We assign a vector to each integer in our vocabulary 
• The simplest way to do this is one-hot encoding 
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• Dimension of encoding vector = # of distinct tokens in the text + one 
for <UNK> 

• This is called the “vocabulary” size 
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Basic Pre-Processing 

Standardize Tokenize Index Encode 

At this point, 
• we have created a vocabulary from the training 

corpus and 
• every distinct token in our vocabulary has been 

assigned a one-hot vector. 
We are done with basic preprocessing. 

44 



      
      

  

Next: How to get a new input sentence* 
ready to be “fed” into a DNN 

*document = sentence = string 45 



      
      

           
    

        

Next: How to get a new input sentence 
ready to be “fed” into a DNN 

• Let’s say we have completed STIE* on the training corpus and our 
vocabulary size is 100. 

*change to lowercase, strip punctuation, leave stop words as is, no stemming 46 



      
      

           
   

               
   

   
 

Next: How to get a new input sentence 
ready to be “fed” into a DNN 

• Let’s say we have completed STIE on the training corpus and our 
vocabulary size is 100. 

• This input text string arrives - “The cat sat on the mat” – and we 
run it through STIE 

Standardize Tokenize Index Encode 
“The cat sat 
on the mat” 

47 



      
      

           
   

               
   

               

   
 

Next: How to get a new input sentence 
ready to be “fed” into a DNN 

• Let’s say we have completed STIE on the training corpus and our 
vocabulary size is 100. 

• This input text string arrives - “The cat sat on the mat” – and we 
run it through STIE 

Standardize Tokenize Index Encode 
“The cat sat 
on the mat” 

• The output is a table with A rows and B columns. What are A and B? 

48 



      
      

           
   

               
   

        

   
 

Next: How to get a new input sentence 
ready to be “fed” into a DNN 

• Let’s say we have completed STIE on the training corpus and our 
vocabulary size is 100. 

• This input text string arrives - “The cat sat on the mat” – and we 
run it through STIE 

Standardize Tokenize Index Encode 
“The cat sat 
on the mat” 

• The output is a 6 x 100 table. 

49 



  

        
     

     

How to get a new input sentence ready 
to be “fed” into a DNN 

The output table* 

*Not showing 0s to avoid clutter 50 



              
  

        
     

How to get a new input sentence ready 
to be “fed” into a DNN 

• What’s the best way to “feed” this 6 x 100 table of numbers to a 
DNN? 

51 



              
  

  

        
     

How to get a new input sentence ready 
to be “fed” into a DNN 

• What’s the best way to “feed” this 6 x 100 table of numbers to a 
DNN? 

• Can we send this table as-is into a DNN? 

52 



              
 

  

        
      

   

        
     

How to get a new input sentence ready 
to be “fed” into a DNN 

• What’s the best way to “feed” this 8 x 100 table of numbers to a 
DNN? 

• Can we send this table as-is into a DNN? 

• A complication: Each incoming sentence may have a different 
number of words i.e.. may have varying length. It will be nice to 
have a fixed-length input 

53 



              
 

  

        
      

   

     

        
     

How to get a new input sentence ready 
to be “fed” into a DNN 

• What’s the best way to “feed” this 8 x 100 table of numbers to a 
DNN? 

• Can we send this table as-is into a DNN? 

• A complication: Each incoming sentence may have a different 
number of words i.e.. may have varying length. It will be nice to 
have a fixed-length input 

• What if we “aggregate” the vectors? 

54 



              
 

  

        
      

   

     
       
       

        
     

How to get a new input sentence ready 
to be “fed” into a DNN 

• What’s the best way to “feed” this 8 x 100 table of numbers to a 
DNN? 

• Can we send this table as-is into a DNN? 

• A complication: Each incoming sentence may have a different 
number of words i.e.. may have varying length. It will be nice to 
have a fixed-length input 

• What if we “aggregate” the vectors? 
• Sum the vectors. This is called “count encoding” 
• “OR” the vectors. This is called “multi-hot encoding” 

55 



  Example: Count and Multi-hot Encoding 
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How to get a new input sentence ready 
to be “fed” into a DNN 

• What’s the best way to “feed” this 8 x 100 table of numbers to a 
DNN? 

• Can we send this table as-is into a DNN? 

• A complication: Each incoming sentence may have a different 
number of words i.e.. may have varying length. It will be nice to 
have a fixed-length input 

• What if we “aggregate” the vectors? 
• Sum the vectors. This is called “count encoding” 
• “OR” the vectors. This is called “multi-hot encoding” 

• This aggregation approach is called the Bag of Words model 

57 



       
 

Does the Bag of Words approach have 
any shortcomings? 
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Does the Bag of Words approach have 
any shortcomings? 

• We lose the meaning inherent in the order of the words 
(i.e., we lose “sequentiality”) 
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Does the Bag of Words approach have 
any shortcomings? 

• We lose the meaning inherent in the order of the words 
(i.e., we lose “sequentiality”) 

• If the vocabulary is very long, each input – regardless of its 
number of tokens – will be a vector that’s as long as the size 
of the vocabulary. 

60 



       
 

           
  

           
            

  
         

 
      

           
   

Does the Bag of Words approach have 
any shortcomings? 

• We lose the meaning inherent in the order of the words 
(i.e., we lose “sequentiality”) 

• If the vocabulary is very long, each input – regardless of its 
number of tokens – will be a vector that’s as long as the size 
of the vocabulary. 
• This can be somewhat mitigated by choosing only the 

most-frequent words 
• Nevertheless, this increases the number of weights the 

model has to learn and thus also the compute time and 
the risk of overfitting. 
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   Task For NLP 1 
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-----------------------------------------------------------------------

Application: Genre Prediction 

I grew up on the crime side, the New York Times side 
Stayin' alive was no jive 
Had secondhands, Mom's bounced on old man 
So then we moved to Shaolin land 

I walked through the door with you 
The air was cold 
But something about it felt like home somehow 
And I, left my scarf there at your sisters house 

Can you classify each verse above into hip-hop, rock or pop? 
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What’s the simplest NN-based 
classifier we can build? 
Blackboard 
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What’s the simplest NN-based 
classifier we can build? 
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Colab 
(text pre-processing, bag-of-words and bigrams) 

Link to Colab 
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https://colab.research.google.com/drive/1u-6wjRZKvZWV1p2OFFF_NMI-bW9gYKuf?usp=sharing
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