The “Deep Learning for NLP” Lecture Roadmap
Lecture 8: Transformers (2/2)

Lectures 9-10: LLMs

15.504: Hands-on Deep Learning
Spring 2024

MANAGEMENT Farias, Ramakrishnan
SLOAN SCHOOL

Review — Why Transformers?

We want to generate an output that has the same length as
the input (so that we can classify each output element to the
right slot type)

Review — Why Transformers?

In addition, we would like to
- Take the surrounding context of each word into account

- Take the order of the words into account

Review —Transformer Architecture (1)

the train slowly left the station

A

Review —Transformer Architecture (1)

the train slowly left the station

A T T T

Review —Transformer Architecture (1)

the train slowly left the station

l l l l l l initially random of embedding dimension D

Review —Transformer Architecture (1)

the train slowly left the station

l l l l l l initially random of embedding dimension D

Review —Transformer Architecture (1)

-1
the train slowly left the station initially random or pretrained (e.g., GloVe)

l l l l l weight vectors of embedding dimension D
initially random of embedding dimension D

Input stand-alone embeddings Positional embedding
ERREN v
ERER
RRERR v Positional input
REER v- embeddings

O— EEEE .
L J
v

embedding dimension D

Review —Transformer Architecture (2)

Contextual
embeddings
— DR
EEEE .
AR - Transformer Encoder — BEEE .

| - — BEEE -,

— BRER .
— BEER .

Word-to-Slot Classification with Transformers
(Revisited)
.

Contextual
. embeddings 5

N Y Y

-
T —EEl— 0
—.

fly [———
from ”ﬁ”ﬁ”ﬁ”ﬁ_'_'l[l[l' N T L El— o

pumENy TS

— FGE) —————
soston (I EREE TN
o ([HEE EEEn BEE — ga— O
Denver | | | 1 01 1 1 T — .

embedding dimension

“Transformer Encoder (MMM | = | Indicate 4-element embedding vectors

Transformer Encoder

Contextual
embeddings

— ElEE
EEEE .
AR - Transformer Encoder — BEEE .

| - — BEEE -,
— BREE .

— BEER .

11

We will now cover three (further) important

elements of the Transformer Encoder*™
0

- Making self-attention “tunable”

. Residual connections

- Layer normalization

* not covered in lecture 7 12

Review: Self-Attention

-1
The train slowly left the station

Embedding after
self-attention

\
/

Wg = S1 W1 + Sy Wy +S3 W3 +S4 6Ws +S56Ws +S66

13

As it stands, the self-attention heads don’t have any internal weights

so all the heads will produce the same output embeddings. We need
to make each of them “tunable”.

Positional input , Contextual
: Attention .
embeddings Head embeddings

BEEE v —| \\\ EEEE

BERR . — . [001]
P Concatenate — Feed-

7]7]7]7 W3 e and Project E.: Forward

EEEn v.—

Layer
BEEB - —|

. w, —=| Attention
Head

14

How can we make this representation more

“tunable”?
3

Please see
HODL-SP24-Section-A-The Self-Attention Layer.pdf

15

Making Self-Attention Tunable

o
_exp(wy, W) _exp{Aw;, Aw)
T T exp(w,) » 0T B explAw, Aw)
- We can multiply the positional input embeddings by a

matrix A before their dot-product is computed.
- Multiplying by a matrix A = a dense layer with a linear activation

16

Making Self-Attention Tunable

o
_exp(wy, W) _exp{Aw;, Aw)
X8 exp(w;, we) » Yi-1 exp(Aw;, Aw)
- We can multiply the positional input embeddings by a

matrix A before their dot-product is computed.
- Multiplying by a matrix A = a dense layer with a linear activation

- The key point: The numbers in the matrix A are
“learnable” weights i.e., weights that we will optimize
with backprop. This is what we mean by “tunable”

17

Making Self-Attention Tunable

]
exp(Aw,, Aw,) » . exp(A¥w,, A%w,)
S = 1,6 —
1,6 Z?:l exp(Aw;, Aw,) Zi6=1 eXp<AK ,AC)

- We use two different matrices (called a key matrix
and a query matrix) before computing the
similarities.

. We now have two matrices AX and A9 of
“learnable” weights -> twice as tunable as before!

18

Tweak: Making Self-Attention Tunable

In the final step, we apply a (third) matrix A" of learnable
weights and then compute the contextual embedding!

We = 51 AW, + 5, AW, +55 AWy +5, AW, +55 AV W +56 AV

instead of

Wg = S1 W1 T Sy Wy +S36W3 1TS54 W4 TS5 6Ws +Sg 6

19

Summary: Making Self-Attention Tunable

L exp(w, W) L exp(AKw,,A%w,)
YR exp(wy,) » YR exp(AKuw, AQw,)

¥

A\

We = 51 AW, + 5, AW, +55 AWy +5, AV W, +55 AV W +56 AV

The values in matrices A%, A9, AV are weights learned
through optimization (SGD). This makes them “tunable” and
(as we will see shortly) enable the attention “heads” to
learn different patterns in the input

This entire operation can be written compactly in this matrix equation (https://arxiv.org/pdf/1706.03762.pdf):

20

Attention(Q, K, V) ftmax(QKT)\'
£ O N , ¥V) = soltma —)V
Vi

Summary: Multi-Head Attention

Positional input , Contextual
: Attention .
embeddings Head embeddings

(AK, A, A")
N EEEE
—’
Concatenate — Feed-
and Project —- Forward
—'
/ Layer
//7/,
Attention
Head
(AK, A, AV)

*Important: Each attention head will have its own A%, A9, AV 21

Transformer Encoder

Positional input Contextual
embeddings embeddings

1
N v.— Multi- S_—
W

|] 22
apnN v:— head — Feed- W
L v Attention — Forward s
DO ws—| Layer « — laver W
apEn v, — — W

22

Another tweak: Residual Connection

We sum the input embedding to the output embedding of the Attention / Feed-
Forward Layers. This helps gradients flow better during backpropagation.

|00 : — — BEEE
BERE © L Multi- — EEED .,
BERE | head |— Feed- | — DEEE .
BEEE - | Attention | — | forward | — mEEE .,
BERR © . layer |~ Bver | — mEEE .
BERE . — — BEEE .

—

23

A final tweak: Layer Normalization

S
After the Attention / Feed-Forward Layers, we standardize (i.e., subtract mean and
divide by std) each embedding. This ensures that the weights stay small.

|00 : — — BEEE
BERE © L Multi- — EEED .,
BERE | head |— Feed- | — DEEE .
BEEE - | Attention | — | forward | — mEEE .,
BERR © . layer |~ Bver | — mEEE .
BERE . BEEE .

24

Layer Normalization

! (1) Calc mean and std dev
'\ foreach embedding and

(2) Translate and rescale l

- each embedding /'
‘standardize™ __dimension** __ | _. :
Layer Normalization
*subtract mean and divide by standard deviation 25

** see https://keras.io/api/layers/normalization layers/layer normalization/ for details

Transformer Encoder

. Y Y Ya

mEann — — AN Wy
mEEE o4 Mol | — — EEEE
DEEE 4> | head | —| Feed | 4 DEEE .
T vt Attention — Forward —»IUUU w4
] = Layer — laver * R .
BEEE -+ EEEE .

l_ﬂ;:T

26

Transformer Encoders are stackable!

Multi-
head
Attention
Layer

Feed-
Forward
Layer

: al lo

27

The Transformer Encoder

03
2 2 z
o =
Q O
> 2 f)
Q l l
BREEN — | IRER
EREN Multi- +tOEEE - . m | P |
head |—| Feed- | — HEEE o, | 3 55|] | g =]
BERE Attention =~ F(I)-rward — BEEE - c —> %TCJ | "2 215 8=
EREe Layer | —f -Y€' T BRER » 5 S S1le ol o
. | omEm Q o | B 3
- o - -
u u) ’

https://arxiv.org/abs/1706.03762

Figures from "Attention is All You Need" © Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia 2 8
Polosukhin. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Review: What is Optimized?

Positional Contextual
input embeddings Softmax
—— O
— 0
: p B-fromloc.city_nam

. I
I

sl I
I

- =—+—F B-toloc.city_nar
.

— e o =

1. Positional embeddings

2. Stand-alone embeddings (unless pretrained and Trainable=False)

3. Matrices AX, A9, AV for each attention head (inside TE)
_________ y 4. Layer norm scale and bias parameters (inside TE)

5

6

/.

o —

Weights in Feed-Forward layers (inside TE)
Weights in Dense layers outside TE
Weights in final Softmax layer

Weights optimized
by backprop

“Transformer Encoder (MMM | = | Indicate 4-element embedding vectors

— — —t —

Applying the Transformer — Common Use-

Cases
e
Sequence classification

Transformer

“I loved the movie” —— —— Positive

Encoder

Sequence labeling

fly 0
from 0]
“fly from Boston Transformer |
” Encoder — Boston B-fromloc.city_name
to Denver t -
o

Denver B-toloc.city_name

Sequence generation

“I loved the movie,
_, especially the
cinematography and
the background
score”

Transformer Causal
Encoder*

“I loved the movie” —

*covered in Lecture 9

We saw how to do Sequence Labeling

e
Sequence classification

Transformer

“I loved the movie” —— —— Positive

Encoder

v|Sequence labeling

fly 0
from 0]
“fly from Boston Transformer |
” Encoder — Boston B-fromloc.city_name
to Denver t -
o

Denver B-toloc.city_name

Sequence generation

“I loved the movie,
_, especially the
cinematography and
the background
score”

Transformer Causal
Encoder

“I loved the movie” —

ow can we do this?

Transformer

_____) — Positive
______________________________________ Encoder

Sequence labeling

fly 0
“ Transformer fion o
fly from Boston |
” Encoder — Boston B-fromloc.city_name
to Denver - -

Denver B-toloc.city_name

Sequence generation

“I loved the movie,
—, especially the
cinematography and
the background
score”

Transformer Causal
Encoder

“I loved the movie” —

Recall: The Transformer Encoder produces a
contextual embedding for each token in the input

]
Positional
input Contextual
| embeddings embeddings
' WEER I L 100
| d TR ransformer
ove g [Coder l'
the = UU
movie ::1: UU

33

IT we could "'summarize” the multiple contextual
embeddings into a single embedding that represents

the whole sentence ...

]
Positional
input Con textl{al
| eﬂlg d ﬂ”ﬂ embeddings
| ! | B e L 000
oved T T T ransformer
g [ncodcr [EEEN —
the = UU
movie ::1: UU

34

... we can feed the sentence embedding into a dense
ReLU layer, followed by a sigmoid (or softmax)

]
Positional
input Contextual
. embeddings embeddings
' WEER I L 100
| d TR ranstormer
. gepuegeed Cncoder [N nEEE —
the | | | 00 7 1 l
movie .

ERER
Dense
with RelLU

|

Dense
with —— Positive!l
sigmoid

35

How can we do this?

— RN —
EEEE BERE 1

movie . \--UM----

Encoder

AT TR T T

the |

— S— S— S—

Positional SRR LS NN e s, .

input { Contextual \

. embeddings | embeddings E
1 1T 0 0 | I

- . AR i

loved 77 7 HERS I E | .

|

:

I

1

o ———

Dense
with RelLU

Dense
with —— Positive!l

sigmoid

36

We can average the four BEEE to get DEEE

]
Positional gFEOTEEEEEOSSSEmmESmmEmEREEESS s
input { Contextl{a/ |
- @[Edﬂnﬂ | embeddings :
I' | ———— |m UREE i
oved = o | ranstormer ,
:J:::_’ Encoder i_' EEEE — ERERR :
the AR l |
T 1 0 un) \

movie . . Aeee___ Y
Dense
with RelLU

Any shortcomings? l

Dense
with —— Positive!l

sigmoid

37

A better approach: Add a special token at the

beginning of each sentence and just use its output
em

beddinﬁ as the sentence—embeddinﬁ
]

tional Contextual
'f) ositiona embeddings
input
—.___embeddings.__
<s> BEEE
“““ i ﬁ—\—\—\ Transformer _.eee
:::: Encode
loved ERNE l Dense
the I EERR with ReLU
movie L ERER

|

The embedding of <CLS> will Dense
come to represent the "Y1 B — Positive!

sentence as a whole over the sigmoid
course of training

38

If the input data for a task is natural language
text, we don't have to restrict ourselves to just
the text we have.

Wouldn't it be great to learn from “all the text
that's out there™?

Supervised Learning

Recall the Transfer Learning example from Lecture 4

e
ResNet 34*

|~ 1
1 1
1 1
1 1
1 1
1 K 1
! P f
1 1
1 1
1 - 1
1 T R 1
1 g ! H o 1
i .= N | - © : 1le < ~ |
1 3 3 5 | MR E Bl |] q 2131 [313] |3 :.§ g
v] 2 4 2 1% / . L I R

.- g 5 Haligl gl 5 ; ki agb
\ o 2 L) o - -

) = - Al 2] |13 R 2 2 2 !
1 [} 1
1 < 1
1 m 1
1 1
1 1
1 1
1 1

We fed the output of “headless Resnet” to a small NN

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

*https://arxiv.org/abs/1512.03385 41

We built a very accurate handbags/shoes classifier
with only 100 examples
1

Input Layer =)
 smart Hidden layer Output
representations |ayer
from “headless”
ResNet

Handbag/
— Shoe

@...@

&

42

We built a very accurate handbags/shoes classifier
with only 100 examples
1

Input Layer =)
 smart Hidden layer Output
representations |ayer
from “headless”
ResNet

Handbag/
—> Shoe

@...@

&

Why was this so effective?

43

Neural networks are Representation

learners

The output of every layer in a DNN can be thought of as a
transformed version of the “raw” input. These transformed
versions of the input are called representations

From this perspective, a deep NN trained with Supervised
Learning learns many representations and a final regression
model

X
®

oQ
A
™
(%2]
£
o
-

If we think of a representation as an encoding of the raw input,
the part of the NN that produces that encoding can be viewed
as an encoder. A DNN “contains” many encoders.

UOISS9.433Y

Encoder

What do representations/encoders

capture?
0

s it specific knowledge needed to connect the input to the
particular output the NN was trained to predict?

- Orisit general knowledge about the input data that can be
useful to predict other outputs?

Turns out representations do capture a lot

of general knowledge about the input data
- =

In a deep network trained to classify “everyday” objects into one of
1000 categories, the representations from the first three layers
correspond to lines, then edges, then more complex shapes

ImageNet training image © unknown. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

In a deep network trained to detect faces, the
representations correspond to lines, edges, circles and

finally faces
]

lines => edges, circles => faces!

Convolutional layers images © Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations by Lee at al (2009)

Leveraging the general knowledge in

these representations
-9

- Since these representations are capturing various intrinsic aspects of the
images, they could be used for prediction tasks other than the ones they
were initially trained for.

Leveraging the general knowledge in

these representations
-9

Since these representations are capturing various intrinsic aspects of the
images, they could be used for prediction tasks other than the ones they
were initially trained for.

For example, the representations from the face-detection DNN could be plausibly
used to build an emotion-detection DNN.

Leveraging the general knowledge in

these representations
-9

If we can “somehow” get an encoder that generates good representations
of our input data, we can simply build a regression model with the
representations as input and labels as output

Leveraging the general knowledge in

these representations
-9

- Since we won’t have to “spend” precious data on learning good representations
any more, we won’t need as much labeled data in the first place.

This is exactly what happened with the handbags-
shoes example

1
ResNet 34*

1
1
e [
P h 1
) " 1
! i 1
H] 1
: : :
~ 1
2 SMEEHERE | TERE -
o I T
& S 3 -
- "
2 2 A
1

>

R :

.] 1 1ZINE 15
8 >

A -

>
- -
> ¢ .
3 ;
g ; l | l ‘ :
' - ~ ' 3 >
S f §” 3 E 8
s L. 8
= 2
<
™M

G e EIE (GO (ETE [
: fialinElal alitiat el il b
2 2| (2] 12| 12| || (] (2] |2] |2 3 (3] [2] [2

[77com, 642]
3x3 conw, 128, /2
3:3 conv, 128

We used “headless Resnet” as an encoder that can take raw input and
transform it into useful representations

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

*https://arxiv.org/abs/1512.03385 56

By using these smart representations, we could build a very
accurate handbags/shoes classifier with only 100 examples

Input Layer =)
 smart Hidden layer Output
representations |ayer
from “headless”
ResNet

Handbag/
— Shoe

@...@

&

57

The general approach is to find a deep NN built on

similar inputs but different outputs
-1

Same
inputs as
our problem

.. but
dlfferent
outputs

vVwhnat comes out ot the Iast layer (peTtore the output
layer) of this deep NN is likely to be an excellent

rePresentation of the inﬁut

So we “chop off” the output layer and use the
resulting “headless model” as an encoder

We can “attach” a new output layer to this encoder and train
the network with the actual output labels we care about!

Input — —» New Output
(1Y ‘

We can keep the encoder fixed and learn only
the weights of the new final layer.

Input ' —» New Output
Y ‘

.. or fine-tune all the layers

Input > _» NewOutput

ooo >

To bui

pretral

data.

d such a generally useful
ned model, we need labeled

For example, ResNet was trained on

everyc

ay images which were labeled

with o

ne of 1000 categories

64

To build a genera
ResNet) for text c

ly usefu
ata, we

model (like

need to

(1) collect a lot of text data. This is no
oroblem — there’s plenty of text data
on the Internet e.g., Wikipedia.

65

To build a generally useful model (like
ResNet) for text data, we need to

(1) collect a lot of text data. This is no
oroblem — there’s plenty of text data
on the Internet e.g., Wikipedia.

(2) we need to define output labels for
every piece of text we feed into the

model.

66

For an input sentence, what should the
output label be?

67

A powerful approach to building pretrained models
without labeled data: Self-supervised Learning

The key idea behind self-supervised learning:

Predict a subset of the input data using the rest
of the input

Masking: A Self-supervised Learning

Technique
]

1. We modify the original input data to create “fake” (input, label) pairs by masking a
part of the input and making it the label

crianatinet e

Input

] » .
Label -

Masked

e BN
Label

e T 1
Input

“Fake” B

Label

Masking: A Self-supervised Learning

Technique
0

2. We then use train a Deep Neural Network to predict the “fake” labels from the modified
inputs i.e., to fill in the blanks

“Fake” Labels

Masked Inputs
] |
DNN

Masking Example
-

Original Input
“The mission of the MIT Sloan School of
U Management is to develop principled, ————
_g2%® innovative leaders who improve the world T
el and to generate ideas that advance T,
< management practice \\
4
l’, \\\
Y3 A
4 AY
/ LN
l’ \
I
I
v
Modified Input
“The <MASK> of the MIT Sloan

School of <MASK> is to
develop principled, innovative
<MASK> who improve the
world and to <MASK> ideas
that advance <MASK>
practice.”

\
1
v
“Fake” Labels
mission
bl 1, Management
leaders
generate
management
DNN

-1
Now for the amazing part.
In the process of learning to “fill in the blanks™ successfully, the

Deep Neural Network learns a good representation of the input
data.

This intuitively makes sense. To fill in the blanks successfully, the
model has to learn how the variables are related to each other.

Once a self-supervised mode
can extract an encoder from

it ..

IS built, we

Input

The of the
MIT Sloan School of
is to

develop principled,
innovative
who improve the
world and to
ideas that advance
practice.

Encoder

|||||| ||| =

Output

Management

leaders
generate
management

.. and fine-tune it like we did in Transfer Learning

Input — Output

ooo >

We can use a Transformer Encoder to build this

Self-supervised Learning model for text
-9

Original Input

“The mission of the MIT Sloan School of
Management is to develop principled,

,,,,, innovative leaders who improve the world Tl
. ~
el and to generate ideas that advance S
. >
o management practice >
i N
¢ N,
Y2 N
Y3 AY
¢ AY
Y3 Y
7 \
1 \
I
[
v
Modified Input

“The <MASK> of the MIT Sloan
School of <MASK> is to
develop principled, innovative
<MASK> who improve the
world and to <MASK> ideas
that advance <MASK>
practice.”

\
1
v
“Fake” Labels
mission
bl 1, Management
leaders
generate
management
DNN

Mas

ced Self-Supervisec

Learning is just a

sequence labeling problem
]
Positional Contextual
input embeddings Softmax
embeddings
the [0 EERE I -
WS - N BN T — R, risson
of BRRE | 11]| e
BERR HERN ann —
<|V|ASK>:_‘::: UU :::—P BV —— managen
practice | [[[111] BEN —
“The of the MIT Sloan

The DNN learns to predict the
masked words from the rest of the
sentence

School of Management is to
develop principled, innovative
leaders who improve the world
and to generate ideas that
advance practice.”

77

If we pretrain a Transformer model like this on
massive amounts of English text, we get ...

Positional

input

embeddings
the ([EEE
<MASK>" =
of B

<MASK> | |

ABEEEEE S — —

practice = =

“The of the MIT Sloan
School of Management is to

— B

develop principled, innovative
leaders who improve the world

and to generate ideas that
advance practice.”

Contextual
embeddings

BEEE

Dense

COF— — —

—— —— —
—— e

—_— e

R TR T

—_— e

R TR T

—_— e

Softmax

—
SM

M
Nl —— managen

) , Mission
—
—_—
—

S

— N

78

... BERT!

B

O_/ BERT

>

https://jalammar.github.io/illustrated-bert/

BERT figure by Jay Alammar on GitHub. License: CC BY-NC-SA.

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language
{jacobdevlin,mingweichang, kentonl, kristout}@google.com

https://arxiv.org/pdf/1810.04805.pdf

BERT paper & figures © Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova/ArXiv. All rights reserved. This 79
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Model Architecture BERT’s model architec-

ture is a multi-layer bidirectional Transformer en-

coder based on the original implementation de-

scribed in Vaswani et al. (2017) and released in

the tensor2tensor library.! Because the use
- _ of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
B E RT u S e S t ’] e tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”

Tra n SfO r m e f In this work, we denote the number of layers

(i.e., Transformer blocks) as L, the hidden size as
a rC h |te Ct u re H, and the number of self-attention heads as A.>

We primarily report results on two model sizes:
BERTgsse (L=12, H=768, A=12, Total Param-
eters=110M) and BERT srge (L=24, H=1024,
A=16, Total Parameters=340M).

BERTgAsgE Was chosen to have the same model
size as OpenAl GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-

BERT paper © Jacob Devlin, Ming-Wei Chang, Kenton Lee,

Kristina Toutanova/ArXiv. All rights reserved. This content is former uses constrained self-attention where every
excluded from our Creative Commons license. For more 5 4
information, see https://ocw.mit.edu/help/fag-fair-use. token can only attend to context to its left.

"https://github.com/tensorflow/tensor2tensor
“http://nlp.seas.harvard.edu/2018/04/03/attention.html

. *In all cases we set the feed-forward/filter size to be 4H,
https://arxiv.org/pdf/1810.04805.pdf ie., 3072 for the H = 768 and 4096 for the H = 1024.

“We note that in the literature the bidirectional Trans-

carlier, we recommended adding a speclal token at the
beginning of each sentence and just using its output

embeddinﬁ as the sentence—embeddinﬁ
]

Contextual

Positional embeddings

input

Transformer
Encoder

with RelLU

The embedding of <CLS> will
come to represent the "Y1 B — Positive!
sentence as a whole over the sigmoid

course of training

BERT figure © Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova/ArXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use. 8 1

Conveniently, BERT was trained with the <CLS> token
so it can be used for sequence classification “out of

pebs

E[CLS] E1 Ez EN
T A g)
Rt = N - /_“l_l‘ﬂ
/! [CLS] Tok 1 Tok 2 Tok N
' 1

Single Sentence

Sequence classification

BERT figure © Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova/ArXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Image credit: https://arxiv.org/pdf/1810.04805.pdf * HW?2 CO|a b 82

BERT is an excellent pretrained model for sequence
labeling problems as well
1

O BPER 0
il

2

BERT

E[CLS] E1 Ez EN
o . Jr - -] /J_f_\
[cLs] || Tok1 Tok 2 Tok N

Single Sentence

Sequence labeling

BERT figure © Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova/ArXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Image credit: https://arxiv.org/pdf/1810.04805.pdf 83

A number of variations/improvements of
BERT have appeared over the years and
these can be used for many tasks.

The Sentence Transformers library is a
good resource SBERT et

[
A Sentence-Transformers

https://www.sbert.net/index.html

384

To solve any sequence classification or sequence labeling problem
where the input is natural language text, we can use a model like
BERT as a pre-trained encoder. Label “a few hundred” examples,
attach the right final layers to BERT and fine-tune.

But if your particular problem is a “standard” NLP problem, this
may not be necessary. Numerous pretrained models are available
on various Hubs for all the “standard” NLP problems and you can
start using them without any fine-tuning at all.

85

The Hugging Face Hub is very popular

~ | Hugging Face Models Datasets
—————————
f I
I [
Libraries Datasets Languages Licenses Other : Models i
\ ————————— I
G google/g 7b
Multimodal
: Image + Text to Text (VLLMs) : Visual Question Answering
G google/g 7b-1it
55 Documen t Question Answering

Over 500,000 pretrained models
available!! (as of Feb 27, 2024)

https://huggingface.co/models

Huggingface Colab

87

Transformers have proven to be an effective DNN
architecture across a vast array of domains

Information Retrieval/Search
Machine Translation

Speech Recognition
Text-to-Speech

Computer Vision

Reinforcement Learning

Generative Al (LLMs, Text-to-
image models,
Image Captioning, ...)

Numerous special-purpose
systems (e.g., AlphaFold)

88

Transformers have proven to be an effective DNN
architecture across a vast array of domains

 The architecture of the Transformer block can be used as-is
for a wide range of applications

 What tends to vary from application to application is how the
inputs are encoded/tokenized in a form that can be fed to
the Transformer

89

Vision Transformer: A Transformer for Image
Classification

Vision Transformer (ViT) Transformer Encoder

MLP
Head \
Transformer Encoder |
Pt I @5) @)6 @:ﬁ @)

* Extra learnable
[class] embedding mear Pl’O_]CCllOl’l of Flattened Patches]

~]

Attention

SEE T T 1]

mgs—»@ilm%gﬂﬁﬂ

iz
atches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

https://arxiv.org/pdf/2010.11929.pdf

Vision transformer/encoder figure © Alexey Dosovitskiy,Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas 90
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby/ArXiv. All rights
reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

The Tab Transformer: : A Transformer

for Tabular Data
—

[Multi-Layer Perceptron

A
Concatenation]
A
"/ (Add & Norm]
Feed
Forward
- A
Transformer Add & Norm
X N |
Multi-Head

Attention

3 \ A /
Column Layer
Embedding Normalization

Categorical Features ~ Continuous Features
(%1, X2, ooy X) Xcont € R

Figure 1: The architecture of TabTransformer. Figure license: CCO 1.0.

http://arxiv.org/abs/2012.06678 91

-y
Once the input has been transformed

into the “common language” of
embeddings, we can process them
without changing the architecture of
the Transformer Encoder block.

This turns out to very useful for multi-
modal data

92

-xample: A Transformer-based classifier for
multi-modal data

Language
Embeddings

with RelLU

Transformer
Encoder

Stack
Dense with

et

Age 37 months SOftmaX
Supplier Acme
parts 13 l

Predicted
Label

Desk chair image © Wayfair LLC. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Contrastive Learning (time permitting)

S
We can pretrain models on unlabeled text data by

using self-supervised learning to create artificial
labels (e.g., by masking words and recovering
them).

How can we pretrain models on unlabeled image
data?

Contrastive Learning

For self-supervised learning with image inputs, a technique called
contrastive learning has been found to be very effective*®

Augmented

The basic approach: mages

o For every original image, artificially
construct a pair of “augmented” images

Maximize

agreement

o Train the network to “maximize
agreement” i.e., make the learned
representations of each augmented pair

Original
“close” to each other but “far” from the image
representations of the other pairs

Image credit: http://arxiv.org/abs/2002.05709

*A Simple Framework for Contrastive Learning of Visual Representations by Chen et al (2020)

Dog images © Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton/ArXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Data augmentation examples

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

Image credit: http://arxiv.org/abs/2002.05709

Dog images © Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton/ArXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Once the contrastive learning model is built, we can

extract an encoder from it easily and fine-tune it
]

m

Dog images © Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton/ArXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

MIT OpenCourseWare
https://ocw.mit.edu

15.773 Hands-on Deep Learning
Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

