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Review – Why Transformers? 

We want to generate an output that has the same length as 
the input (so that we can classify each output element to the 
right slot type) 
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Review – Why Transformers? 

We want to generate an output that has the same length as 
the input (so that we can classify each output element to the 
right slot type) 

In addition, we would like to 

• Take the surrounding context of each word into account 

• Take the order of the words into account 
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Review –Transformer Architecture (1) 

train slowly left the station the 
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Review –Transformer Architecture (1) 

Input stand-alone embeddings 

train slowly left the station initially random or pretrained (e.g., GloVe) 
weight vectors of embedding dimension D 

the 
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Input stand-alone embeddings Positional embeddings 

Review –Transformer Architecture (1) 

the train slowly left the station initially random or pretrained (e.g., GloVe) 
weight vectors of embedding dimension D 

initially random of embedding dimension D 
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Review –Transformer Architecture (1) 

Input stand-alone embeddings 

train slowly left the station 

Positional embeddings 

+ 

+ 
+ 

+ 

+ 

+ 

initially random or pretrained (e.g., GloVe) 
weight vectors of embedding dimension D 

initially random of embedding dimension D 

the 
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Review –Transformer Architecture (1) 

initially random or pretrained (e.g., GloVe) 
weight vectors of embedding dimension D 

Input stand-alone embeddings 

train slowly left the station 

Positional embeddings 

+ 

+ 
+ 

initially random of embedding dimension D 

+ 

+ 

embedding dimension D 

+ 

Positional input 
embeddings 
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Review –Transformer Architecture (2)

Positional input 
embeddings

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Transformer Encoder

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Contextual
embeddings
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TE*

fly
from
Boston
to

Dense 
(ReLU)

SM

*Transformer Encoder

SM

SM

SM

O
O

O

B-fromloc.city_name 

SM B-toloc.city_nameDenver

Indicate 4-element embedding vectors

embedding dimension embedding dimension

Positional input 
embeddings

Contextual 
embeddings

Output layer 
(Softmax)

Word-to-Slot Classification with Transformers 
(Revisited)
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Positional input 
embeddings

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Contextual
embeddings

Transformer Encoder

Transformer Encoder



We will now cover three (further) important 
elements of the Transformer Encoder*
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• Making self-attention “tunable”

• Residual connections

• Layer normalization

* not covered in lecture 7
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Review: Self-Attention

The       train     slowly   left       the      station
Positional input 

embedding

Embedding after 
self-attention

𝑠𝑠!,&

𝑤𝑤!

𝑠𝑠",&

𝑤𝑤"

𝑠𝑠#,&

𝑤𝑤#

𝑠𝑠$,&

𝑤𝑤$

𝑠𝑠%,&

𝑤𝑤%

𝑠𝑠&,&

𝑤𝑤&

"𝑤𝑤&

𝑠𝑠!,# =
exp⟨𝑤𝑤!, 𝑤𝑤#⟩	

∑$%!# exp⟨𝑤𝑤$, 𝑤𝑤#⟩

!𝑤𝑤$ = 𝑠𝑠!,#𝑤𝑤! + 𝑠𝑠&,#𝑤𝑤& +𝑠𝑠',#𝑤𝑤' +𝑠𝑠(,#𝑤𝑤( +𝑠𝑠),#𝑤𝑤) +𝑠𝑠#,#𝑤𝑤#
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Positional input 
embeddings

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Contextual
embeddings

Attention 
Head

Feed-
Forward

Layer

Attention 
Head

Concatenate 
and Project

As it stands, the self-attention heads don’t have any internal weights 
so all the heads will produce the same output embeddings. We need 
to make each of them “tunable”.



How can we make this representation more 
“tunable”?
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Please see 
HODL-SP24-Section-A-The Self-Attention Layer.pdf
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𝑠𝑠!,# =
exp⟨𝑤𝑤!, 𝑤𝑤#⟩	

∑$%!# exp⟨𝑤𝑤$, 𝑤𝑤#⟩
𝑠𝑠!,# =

exp⟨𝑨𝑨𝑤𝑤!, 𝑨𝑨𝑤𝑤#⟩	
∑$%!# exp⟨𝑨𝑨𝑤𝑤$, 𝑨𝑨𝑤𝑤#⟩

• We can multiply the positional input embeddings by a 
matrix 𝑨𝑨 before their dot-product is computed. 
• Multiplying by a matrix 𝑨𝑨𝑨= a dense layer with a linear activation

The key point: The numbers in the matrix 𝑨𝑨 are “learnable” 
weights i.e., weights that we will optimize with backprop. 
This is what we mean by “tunable”

Making Self-Attention Tunable
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𝑠𝑠!,# =
exp⟨𝑤𝑤!, 𝑤𝑤#⟩	

∑$%!# exp⟨𝑤𝑤$, 𝑤𝑤#⟩
𝑠𝑠!,# =

exp⟨𝑨𝑨𝑤𝑤!, 𝑨𝑨𝑤𝑤#⟩	
∑$%!# exp⟨𝑨𝑨𝑤𝑤$, 𝑨𝑨𝑤𝑤#⟩

• We can multiply the positional input embeddings by a 
matrix 𝑨𝑨 before their dot-product is computed. 
• Multiplying by a matrix 𝑨𝑨𝑨= a dense layer with a linear activation

• The key point: The numbers in the matrix 𝑨𝑨 are 
“learnable” weights i.e., weights that we will optimize 
with backprop. This is what we mean by “tunable”

Making Self-Attention Tunable
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𝑠𝑠!,# =
exp⟨𝑨𝑨𝑲𝑲𝑤𝑤!, 𝑨𝑨𝑸𝑸𝑤𝑤#⟩	

∑$%!# exp⟨𝑨𝑨𝑲𝑲𝑤𝑤$, 𝑨𝑨𝑸𝑸𝑤𝑤#⟩

• We use two different matrices (called a key matrix 
and a query matrix) before computing the 
similarities. 

• We now have two matrices 𝑨𝑨𝑲𝑲 and 𝑨𝑨𝑸𝑸 of 
“learnable” weights -> twice as tunable as before!

Making Self-Attention Tunable

𝑠𝑠!,# =
exp⟨𝑨𝑨𝑤𝑤!, 𝑨𝑨𝑤𝑤#⟩	

∑$%!# exp⟨𝑨𝑨𝑤𝑤$, 𝑨𝑨𝑤𝑤#⟩
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In the final step, we apply a (third) matrix 𝑨𝑨𝑽𝑽	of learnable 
weights and then compute the contextual embedding!

!𝑤𝑤$ = 𝑠𝑠!,#𝑨𝑨𝑽𝑽𝑤𝑤! + 𝑠𝑠&,#𝑨𝑨𝑽𝑽𝑤𝑤& +𝑠𝑠',#𝑨𝑨𝑽𝑽𝑤𝑤' +𝑠𝑠(,#𝑨𝑨𝑽𝑽𝑤𝑤( +𝑠𝑠),#𝑨𝑨𝑽𝑽𝑤𝑤) +𝑠𝑠#,#𝑨𝑨𝑽𝑽𝑤𝑤#

Tweak: Making Self-Attention Tunable

!𝑤𝑤$ = 𝑠𝑠!,#𝑤𝑤! + 𝑠𝑠&,#𝑤𝑤& +𝑠𝑠',#𝑤𝑤' +𝑠𝑠(,#𝑤𝑤( +𝑠𝑠),#𝑤𝑤) +𝑠𝑠#,#𝑤𝑤#

instead of 



The values in matrices 𝑨𝑨𝑲𝑲, 𝑨𝑨𝑸𝑸, 𝑨𝑨𝑽𝑽 are weights learned 
through optimization (SGD). This makes them “tunable” and 
(as we will see shortly) enable the attention “heads” to 
learn different patterns in the input
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𝑠𝑠!,# =
exp⟨𝑤𝑤!, 𝑤𝑤#⟩	

∑$%!# exp⟨𝑤𝑤$, 𝑤𝑤#⟩
𝑠𝑠!,# =

exp⟨𝑨𝑨𝑲𝑲𝑤𝑤!, 𝑨𝑨𝑸𝑸𝑤𝑤#⟩	
∑$%!# exp⟨𝑨𝑨𝑲𝑲𝑤𝑤$, 𝑨𝑨𝑸𝑸𝑤𝑤#⟩

!𝑤𝑤$ = 𝑠𝑠!,#𝑨𝑨𝑽𝑽𝑤𝑤! + 𝑠𝑠&,#𝑨𝑨𝑽𝑽𝑤𝑤& +𝑠𝑠',#𝑨𝑨𝑽𝑽𝑤𝑤' +𝑠𝑠(,#𝑨𝑨𝑽𝑽𝑤𝑤( +𝑠𝑠),#𝑨𝑨𝑽𝑽𝑤𝑤) +𝑠𝑠#,#𝑨𝑨𝑽𝑽𝑤𝑤#

Summary: Making Self-Attention Tunable

This entire operation can be written compactly in this matrix equation (https://arxiv.org/pdf/1706.03762.pdf):
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Positional input 
embeddings

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Contextual
embeddings

Summary: Multi-Head Attention

Attention 
Head 

(𝐴𝐴!, 𝐴𝐴", 𝐴𝐴#)

Feed-
Forward

Layer

Attention 
Head 

(𝐴𝐴!, 𝐴𝐴", 𝐴𝐴#)

Concatenate 
and Project

*Important: Each attention head will have its own 𝐴𝐴(, 𝐴𝐴), 𝐴𝐴*
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Positional input 
embeddings

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Contextual
embeddings

Transformer Encoder

Feed-
Forward

Layer

Multi-
head

Attention 
Layer
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Another tweak: Residual Connection

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Multi-
head

Attention 
Layer

Feed-
Forward

Layer

+ +

We sum the input embedding to the output embedding of the Attention / Feed-
Forward Layers. This helps gradients flow better during backpropagation.
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A final tweak: Layer Normalization

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Feed-
Forward

Layer

After the Attention / Feed-Forward Layers, we standardize (i.e., subtract mean and 
divide by std) each embedding. This ensures that the weights stay small.

Multi-
head

Attention 
Layer

+ +
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Layer Normalization

(1) Calc mean and std dev 
for each embedding and 
standardize*

Layer Normalization

*subtract mean and divide by standard deviation
** see https://keras.io/api/layers/normalization_layers/layer_normalization/ for details

(2) Translate and rescale 
each embedding 
dimension**
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𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Multi-
head

Attention 
Layer

Feed-
Forward

Layer

+ +

Transformer Encoder
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𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

"𝑤𝑤!
"𝑤𝑤"
"𝑤𝑤#
"𝑤𝑤$
"𝑤𝑤%
"𝑤𝑤&

Multi-
head

Attention 
Layer

Feed-
Forward

Layer

+ +

Transformer Encoders are stackable!

𝑵𝑵	×
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The Transformer Encoder

https://arxiv.org/abs/1706.03762

Figures from "Attention is All You Need" © Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia 
Polosukhin. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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TE*

fly
from
Boston
to

Positional
input 
embeddings

Contextual 
embeddings

Dense 
(ReLU)

SM

Review: What is Optimized?

*Transformer Encoder

SM

SM

SM

O
O

O

B-fromloc.city_name 

SM B-toloc.city_nameDenver

Softmax

Indicate 4-element embedding vectors

Weights optimized 
by backprop

1. Positional embeddings 
2. Stand-alone embeddings (unless pretrained and Trainable=False)
3. Matrices 𝐴𝐴!, 𝐴𝐴", 𝐴𝐴# for each attention head (inside TE)
4. Layer norm scale and bias parameters (inside TE)
5. Weights in Feed-Forward layers (inside TE)
6. Weights in Dense layers outside TE
7. Weights in final Softmax layer
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Sequence classification

Sequence labeling

Sequence generation

Applying the Transformer – Common Use-
Cases

Transformer 
Encoder“I loved the movie” Positive

Transformer 
Encoder

“fly from Boston 
to Denver”

Token Label

fly O

from O

Boston B-fromloc.city_name

to O

Denver B-toloc.city_name

Transformer Causal 
Encoder*“I loved the movie”

“I loved the movie, 
especially the 
cinematography and 
the background 
score”

*covered in Lecture 9



31

Sequence classification

Sequence labeling

Sequence generation

We saw how to do Sequence Labeling

Transformer 
Encoder“I loved the movie” Positive

Transformer 
Encoder

“fly from Boston 
to Denver”

Token Label

fly O

from O

Boston B-fromloc.city_name

to O

Denver B-toloc.city_name

Transformer Causal 
Encoder“I loved the movie”

“I loved the movie, 
especially the 
cinematography and 
the background 
score”
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Sequence classification

Sequence labeling

Sequence generation

Transformer 
Encoder“I loved the movie” Positive

Transformer 
Encoder

“fly from Boston 
to Denver”

Token Label

fly O

from O

Boston B-fromloc.city_name 

to O

Denver B-toloc.city_name 

Transformer Causal 
Encoder“I loved the movie”

“I loved the movie, 
especially the 
cinematography and 
the background 
score”

How can we do this?
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Transformer 
Encoder

Recall: The Transformer Encoder produces a 
contextual embedding for each token in the input

i
loved

the
movie

Positional
input 
embeddings

Contextual 
embeddings
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Transformer 
Encoder

i
loved

the
movie

Positional
input 
embeddings

Contextual 
embeddings

If we could “summarize” the multiple contextual 
embeddings into a single embedding that represents 
the whole sentence …
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Transformer 
Encoder

i
loved

the
movie

Positional
input 
embeddings

Contextual 
embeddings

… we can feed the sentence embedding into a dense 
ReLU layer, followed by a sigmoid (or softmax)

Dense 
with ReLU

Dense 
with 

sigmoid
Positive!
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Transformer 
Encoder

i
loved

the
movie

Positional
input 
embeddings

Contextual 
embeddings

Dense 
with ReLU

Dense 
with 

sigmoid
Positive!

How can we do this?
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Transformer 
Encoder

i
loved

the
movie

Positional
input 
embeddings

Contextual 
embeddings

Dense 
with ReLU

Dense 
with 

sigmoid
Positive!

We can average the four               to get             

Any shortcomings?
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Transformer 
Encoder

i
loved
the

movie

Positional
input 
embeddings

Contextual 
embeddings

Dense 
with ReLU

Dense 
with 

sigmoid
Positive!

A better approach: Add a special token at the 
beginning of each sentence and just use its output 
embedding as the sentence-embedding

<CLS>

The embedding of <CLS> will 
come to represent the 
sentence as a whole over the 
course of training



If the input data for a task is natural language 
text, we don’t have to restrict ourselves to just 
the text we have. 

Wouldn’t it be great to learn from “all the text 
that’s out there”?



Self-Supervised Learning



Recall the Transfer Learning example from Lecture 4

41

ResNet 34*

*https://arxiv.org/abs/1512.03385

We fed the output of “headless Resnet” to a small NN

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Input Layer = 
smart 

representations 
from “headless” 

ResNet

Hidden layer Output 
layer

x1

xn

Handbag/
Shoe

We built a very accurate handbags/shoes classifier 
with only 100 examples
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Input Layer = 
smart 

representations 
from “headless” 

ResNet

Hidden layer Output 
layer

x1

xn

Handbag/
Shoe

Why was this so effective?

We built a very accurate handbags/shoes classifier 
with only 100 examples



Neural networks are Representation 
learners



The output of every layer in a DNN can be thought of as a 
transformed version of the ”raw” input. These transformed 
versions of the input are called representations

x1

x2

xn

Output



From this perspective, a deep NN trained with Supervised 
Learning learns many representations and a final regression 
model

Regression

x1

x2

xn

+



If we think of a representation as an encoding of the raw input, 
the part of the NN that produces that encoding can be viewed 
as an encoder. A DNN “contains” many encoders.

Regression

x1

x2

xn

+

Encoder



What do representations/encoders 
capture?

• Is it specific knowledge needed to connect the input to the
particular output the NN was trained to predict?

• Or is it general knowledge about the input data that can be
useful to predict other outputs?



Turns out representations do capture a lot 
of  general knowledge about the input data



https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

In a deep network trained to classify “everyday” objects into one of 
1000 categories, the representations from the first three layers 
correspond to lines, then edges, then more complex shapes

ImageNet training image © unknown. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



lines =>  edges, circles => faces! 

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations by Lee at al (2009)

In a deep network trained to detect faces, the 
representations correspond to lines, edges, circles and 
finally faces

Convolutional layers images © Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng. All rights reserved. This 
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



Leveraging the general knowledge in 
these representations

• Since these representations are capturing various intrinsic aspects of the
images, they could be used for prediction tasks other than the ones they
were initially trained for.



• Since these representations are capturing various intrinsic aspects of the
images, they could be used for prediction tasks other than the ones they
were initially trained for.
• For example, the representations from the face-detection DNN could be plausibly

used to build an emotion-detection DNN.

Leveraging the general knowledge in 
these representations



• Since these representations are capturing various intrinsic aspects of the
images, they could be used for prediction tasks other than the ones they
were initially trained for.
• For example, the representations from the face-detection DNN could be plausibly

used to build an emotion-detection DNN.

• If we can “somehow” get an encoder that generates good representations
of our input data, we can simply build  a regression model with the
representations as input and labels as output

Leveraging the general knowledge in 
these representations



• Since these representations are capturing various intrinsic aspects of the images,
they could be used for prediction tasks other than the ones they were initially
trained for.
• For example, the representations from the face-detection DNN could be plausibly used

to build an emotion-detection DNN.

• If we can “somehow” get an encoder that generates good representations of our
input data, we can simply build  a regression model with the representations as
input and labels as output

• Since we won’t have to “spend” precious data on learning good representations
any more, we won’t need as much labeled data in the first place.

Leveraging the general knowledge in 
these representations



This is exactly what happened with the handbags-
shoes example

56

ResNet 34*

*https://arxiv.org/abs/1512.03385

We used “headless Resnet” as an encoder that can take raw input and 
transform it into useful representations

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Input Layer = 
smart 

representations 
from “headless” 

ResNet

Hidden layer Output 
layer

x1

xn

Handbag/
Shoe

By using these smart representations, we could build a very 
accurate handbags/shoes classifier with only 100 examples



The general approach is to find a deep NN built on 
similar inputs but different outputs

Same 
inputs as 
our problem 
…

… but 
different 
outputs 



Input Output

What comes out of the last layer (before the output 
layer) of this deep NN is likely to be an excellent 
representation of the input



Input

So we “chop off” the output layer and use the 
resulting “headless model” as an encoder

X



Input

We can “attach” a new output layer to this encoder and train 
the network with the actual output labels we care about!

New Output



Input

We can keep the encoder fixed and learn only 
the weights of the new final layer.

New Output



Input New Output

… or fine-tune all the layers



To build such a generally useful 
pretrained model, we need labeled 
data. 

For example, ResNet was trained on 
everyday images which were labeled 
with one of 1000 categories

64



To build a generally useful model (like 
ResNet) for text data, we need to
(1) collect a lot of text data. This is no
problem – there’s plenty of text data
on the Internet e.g., Wikipedia.
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To build a generally useful model (like 
ResNet) for text data, we need to
(1) collect a lot of text data. This is no
problem – there’s plenty of text data
on the Internet e.g., Wikipedia.
(2) we need to define output labels for
every piece of text we feed into the
model.
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For an input sentence, what should the 
output label be?

67



A powerful approach to building pretrained models 
without labeled data: Self-supervised Learning

The key idea behind self-supervised learning: 

Predict a subset of the input data using the rest 
of the input



Masking: A Self-supervised Learning 
Technique

Original input Masked 
Input

“Fake” 
Label

1. We modify the original input data to create “fake” (input, label) pairs by masking a
part of the input and making it the label

Masked 
Input

“Fake” 
Label

Masked 
Input

“Fake” 
Label



2. We then use train a Deep Neural Network to predict the “fake” labels from the modified 
inputs i.e., to fill in the blanks

DNN

Masked Inputs “Fake” Labels

Masking: A Self-supervised Learning 
Technique



Modified Input “Fake” Labels

Masking Example

Original Input
“The mission of the MIT Sloan School of 
Management is to develop principled, 
innovative leaders who improve the world 
and to generate ideas that advance 
management practice.”

“The <MASK> of the MIT Sloan 
School of <MASK> is to 
develop principled, innovative 
<MASK> who improve the 
world and to <MASK> ideas 
that advance <MASK>  
practice.”

The mission of the MIT Sloan 
School of Management is to 
develop principled, innovative 
leaders who improve the world and 
to generate ideas that advance 
management practice.

DNN



Now for the amazing part.

In the process of learning to “fill in the blanks”” successfully, the 
Deep Neural Network learns a good representation of the input 
data.



Now for the amazing part.

In the process of learning to “fill in the blanks”, the Deep Neural 
Network learns a good representation of the input data.

This intuitively makes sense. To fill in the blanks successfully, the 
model has to learn how the variables are related to each other.



Input
Output

Once a self-supervised model is built, we 
can extract an encoder from it …

The ______ of the 
MIT Sloan School of 
________ is to 
develop principled, 
innovative ______ 
who improve the 
world and to ______ 
ideas that advance 
______  practice.

The mission of the MIT 
Sloan School of 
Management is to develop 
principled, innovative 
leaders who improve the 
world and to generate ideas 
that advance management 
practice.

Encoder



Input Output

… and fine-tune it like we did in Transfer Learning



Modified Input “Fake” Labels

Original Input
“The mission of the MIT Sloan School of 
Management is to develop principled, 
innovative leaders who improve the world 
and to generate ideas that advance 
management practice.”

“The <MASK> of the MIT Sloan 
School of <MASK> is to 
develop principled, innovative 
<MASK> who improve the 
world and to <MASK> ideas 
that advance <MASK>  
practice.”

The mission of the MIT Sloan 
School of Management is to 
develop principled, innovative 
leaders who improve the world and 
to generate ideas that advance 
management practice.

DNN

We can use a Transformer Encoder to build this 
Self-supervised Learning model for text
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TE

the
<MASK>
of
…

Positional
input 
embeddings

Contextual 
embeddings

Dense 
(ReLU)

SM

SM

SM

SM

mission

SM<MASK>

Softmax

Masked Self-Supervised Learning is just a 
sequence labeling problem

“The ______ of the MIT Sloan 
School of Management is to 
develop principled, innovative 
leaders who improve the world 
and to generate ideas that 
advance ______  practice.”

practice SM

management

The DNN learns to predict the 
masked words from the rest of the 
sentence
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TE

the
<MASK>
of
…

Positional
input 
embeddings

Contextual 
embeddings

Dense 
(ReLU)

SM

SM

SM

SM

mission

SM<MASK>

Softmax

“The ______ of the MIT Sloan 
School of Management is to 
develop principled, innovative 
leaders who improve the world 
and to generate ideas that 
advance ______  practice.”

practice SM

management

If we pretrain a Transformer model like this on 
massive amounts of English text, we get …



… BERT! 
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https://arxiv.org/pdf/1810.04805.pdf

https://jalammar.github.io/illustrated-bert/

BERT figure by Jay Alammar on GitHub. License: CC BY-NC-SA.

BERT paper & figures © Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova/ArXiv. All rights reserved. This 
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



BERT uses the 
Transformer 
architecture

80https://arxiv.org/pdf/1810.04805.pdf

BERT paper © Jacob Devlin, Ming-Wei Chang, Kenton Lee, 
Kristina Toutanova/ArXiv. All rights reserved. This content is 
excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use.
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Transformer 
Encoder

i
loved
the

movie

Positional
input 
embeddings

Contextual 
embeddings

Dense 
with ReLU

Dense 
with 

sigmoid
Positive!

Earlier, we recommended adding a special token at the 
beginning of each sentence and just using its output 
embedding as the sentence-embedding

<CLS>

The embedding of <CLS> will 
come to represent the 
sentence as a whole over the 
course of training

BERT figure © Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova/ArXiv. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



Conveniently, BERT was trained with the <CLS> token 
so it can be used for sequence classification “out of 
the box”*

82

Sequence classification

Image credit: https://arxiv.org/pdf/1810.04805.pdf *HW2 colab

BERT figure © Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova/ArXiv. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



BERT is an excellent pretrained model for sequence 
labeling problems as well

83Image credit: https://arxiv.org/pdf/1810.04805.pdf

Sequence labeling
BERT figure © Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova/ArXiv. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



A number of variations/improvements of 
BERT have appeared over the years and 
these can be used for many tasks.

The Sentence Transformers library is a 
good resource

84https://www.sbert.net/index.html
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To solve any sequence classification or sequence labeling problem 
where the input is natural language text, we can use a model like 
BERT as a pre-trained encoder.  Label “a few hundred” examples, 
attach the right final layers to BERT and fine-tune.

But if your particular problem is a “standard” NLP problem, this 
may not be necessary. Numerous pretrained models are available 
on various Hubs for all the “standard” NLP problems and you can 
start using them without any fine-tuning at all.



The Hugging Face Hub is very popular

https://huggingface.co/models

Over 500,000 pretrained models 
available!! (as of Feb 27, 2024)



Huggingface Colab
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Transformers have proven to be an effective DNN 
architecture across a vast array of domains

88

Information Retrieval/Search

Machine Translation

Speech Recognition

Text-to-Speech

Computer Vision

Reinforcement Learning

Generative AI (LLMs, Text-to-
image models, 
Image Captioning, …)

Numerous special-purpose 
systems (e.g., AlphaFold)

…



Transformers have proven to be an effective DNN 
architecture across a vast array of domains

89

• The architecture of the Transformer block can be used as-is
for a wide range of applications

• What tends to vary from application to application is how the
inputs are encoded/tokenized in a form that can be fed to
the Transformer



Vision Transformer: A Transformer for Image 
Classification

90

https://arxiv.org/pdf/2010.11929.pdf

Vision transformer/encoder figure © Alexey Dosovitskiy,Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas 
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby/ArXiv. All rights 
reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



The Tab Transformer: : A Transformer 
for Tabular Data

91http://arxiv.org/abs/2012.06678

Figure license: CC0 1.0.



Once the input has been transformed 
into the “common language” of 
embeddings, we can process them 
without changing the architecture of 
the Transformer Encoder block.

This turns out to very useful for multi-
modal data

92



Variable Value

Age 37 months

Supplier Acme

# parts 13

… …

Transformer 
Encoder

Stack

<CLS>

Dense 
with ReLU

Dense with 
sigmoid/
softmax

Predicted 
Label

Example: A Transformer-based classifier for 
multi-modal data

Desk chair image © Wayfair LLC. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



Contrastive Learning (time permitting)



We can pretrain models on unlabeled text data by 
using self-supervised learning to create artificial 
labels (e.g., by masking words and recovering 
them).

How can we pretrain models on unlabeled image 
data?



For self-supervised learning with image inputs, a technique called 
contrastive learning has been found to be very effective*

Contrastive Learning

The basic approach:
o For every original image, artificially

construct a pair of “augmented” images

o Train the network to “maximize
agreement” i.e., make the learned 
representations of each augmented pair 
“close” to each other but “far” from the 
representations of the other pairs

DNN

DNN
(same as the one 

above)

Maximize 
agreement

Original 
image

Representations

Augmented 
images

Image credit: http://arxiv.org/abs/2002.05709

*A Simple Framework for Contrastive Learning of Visual Representations by Chen et al (2020)

Dog images © Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton/ArXiv. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



Data augmentation examples

Image credit: http://arxiv.org/abs/2002.05709

Dog images © Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton/ArXiv. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



DNN

DNN
(same as the one 

above)

Maximize 
agreement

Original 
image

Representations

Augmented 
images

Image credit: http://arxiv.org/abs/2002.05709

DNN

Once the contrastive learning model is built, we can 
extract an encoder from it easily and fine-tune it

Dog images © Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton/ArXiv. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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