
The “Deep Learning for NLP” Lecture Roadmap
Lecture 8: Transformers (2/2)
Lecture 5: Text Vectorization
and the Bag-of-Words Model
Lecture 6: Embeddings
Lecture 7: Transformers – (1/2)
Lectures 9-10: LLMs

15.S04: Hands-on Deep Learning
Spring 2024
FFaarriiaass,, RRaammaakkrriisshhnnaann

Review – Why Transformers?

We want to generate an output that has the same length as
the input (so that we can classify each output element to the
right slot type)

2

Review – Why Transformers?

We want to generate an output that has the same length as
the input (so that we can classify each output element to the
right slot type)

In addition, we would like to

• Take the surrounding context of each word into account

• Take the order of the words into account

3

Review –Transformer Architecture (1)

train slowly left the station the

4

Review –Transformer Architecture (1)

Input stand-alone embeddings

train slowly left the station initially random or pretrained (e.g., GloVe)
weight vectors of embedding dimension D

the

5

Input stand-alone embeddings Positional embeddings

Review –Transformer Architecture (1)

the train slowly left the station initially random or pretrained (e.g., GloVe)
weight vectors of embedding dimension D

initially random of embedding dimension D

6

Review –Transformer Architecture (1)

Input stand-alone embeddings

train slowly left the station

Positional embeddings

+

+
+

+

+

+

initially random or pretrained (e.g., GloVe)
weight vectors of embedding dimension D

initially random of embedding dimension D

the

7

Review –Transformer Architecture (1)

initially random or pretrained (e.g., GloVe)
weight vectors of embedding dimension D

Input stand-alone embeddings

train slowly left the station

Positional embeddings

+

+
+

initially random of embedding dimension D

+

+

embedding dimension D

+

Positional input
embeddings

�!
�"
�#
�$
�%
�&

the

8

9

Review –Transformer Architecture (2)

Positional input
embeddings

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Transformer Encoder

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Contextual
embeddings

10

TE*

fly
from
Boston
to

Dense
(ReLU)

SM

*Transformer Encoder

SM

SM

SM

O
O

O

B-fromloc.city_name

SM B-toloc.city_nameDenver

Indicate 4-element embedding vectors

embedding dimension embedding dimension

Positional input
embeddings

Contextual
embeddings

Output layer
(Softmax)

Word-to-Slot Classification with Transformers
(Revisited)

11

Positional input
embeddings

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Contextual
embeddings

Transformer Encoder

Transformer Encoder

We will now cover three (further) important
elements of the Transformer Encoder*

12

• Making self-attention “tunable”

• Residual connections

• Layer normalization

* not covered in lecture 7

13

Review: Self-Attention

The train slowly left the station
Positional input

embedding

Embedding after
self-attention

𝑠𝑠!,&

𝑤𝑤!

𝑠𝑠",&

𝑤𝑤"

𝑠𝑠#,&

𝑤𝑤#

𝑠𝑠$,&

𝑤𝑤$

𝑠𝑠%,&

𝑤𝑤%

𝑠𝑠&,&

𝑤𝑤&

"𝑤𝑤&

𝑠𝑠!,# =
exp⟨𝑤𝑤!, 𝑤𝑤#⟩	

∑$%!# exp⟨𝑤𝑤$, 𝑤𝑤#⟩

!𝑤𝑤$ = 𝑠𝑠!,#𝑤𝑤! + 𝑠𝑠&,#𝑤𝑤& +𝑠𝑠',#𝑤𝑤' +𝑠𝑠(,#𝑤𝑤(+𝑠𝑠),#𝑤𝑤) +𝑠𝑠#,#𝑤𝑤#

14

Positional input
embeddings

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Contextual
embeddings

Attention
Head

Feed-
Forward

Layer

Attention
Head

Concatenate
and Project

As it stands, the self-attention heads don’t have any internal weights
so all the heads will produce the same output embeddings. We need
to make each of them “tunable”.

How can we make this representation more
“tunable”?

15

Please see
HODL-SP24-Section-A-The Self-Attention Layer.pdf

16

𝑠𝑠!,# =
exp⟨𝑤𝑤!, 𝑤𝑤#⟩	

∑$%!# exp⟨𝑤𝑤$, 𝑤𝑤#⟩
𝑠𝑠!,# =

exp⟨𝑨𝑨𝑤𝑤!, 𝑨𝑨𝑤𝑤#⟩	
∑$%!# exp⟨𝑨𝑨𝑤𝑤$, 𝑨𝑨𝑤𝑤#⟩

• We can multiply the positional input embeddings by a
matrix 𝑨𝑨 before their dot-product is computed.
• Multiplying by a matrix 𝑨𝑨𝑨= a dense layer with a linear activation

The key point: The numbers in the matrix 𝑨𝑨 are “learnable”
weights i.e., weights that we will optimize with backprop.
This is what we mean by “tunable”

Making Self-Attention Tunable

17

𝑠𝑠!,# =
exp⟨𝑤𝑤!, 𝑤𝑤#⟩	

∑$%!# exp⟨𝑤𝑤$, 𝑤𝑤#⟩
𝑠𝑠!,# =

exp⟨𝑨𝑨𝑤𝑤!, 𝑨𝑨𝑤𝑤#⟩	
∑$%!# exp⟨𝑨𝑨𝑤𝑤$, 𝑨𝑨𝑤𝑤#⟩

• We can multiply the positional input embeddings by a
matrix 𝑨𝑨 before their dot-product is computed.
• Multiplying by a matrix 𝑨𝑨𝑨= a dense layer with a linear activation

• The key point: The numbers in the matrix 𝑨𝑨 are
“learnable” weights i.e., weights that we will optimize
with backprop. This is what we mean by “tunable”

Making Self-Attention Tunable

18

𝑠𝑠!,# =
exp⟨𝑨𝑨𝑲𝑲𝑤𝑤!, 𝑨𝑨𝑸𝑸𝑤𝑤#⟩	

∑$%!# exp⟨𝑨𝑨𝑲𝑲𝑤𝑤$, 𝑨𝑨𝑸𝑸𝑤𝑤#⟩

• We use two different matrices (called a key matrix
and a query matrix) before computing the
similarities.

• We now have two matrices 𝑨𝑨𝑲𝑲 and 𝑨𝑨𝑸𝑸 of
“learnable” weights -> twice as tunable as before!

Making Self-Attention Tunable

𝑠𝑠!,# =
exp⟨𝑨𝑨𝑤𝑤!, 𝑨𝑨𝑤𝑤#⟩	

∑$%!# exp⟨𝑨𝑨𝑤𝑤$, 𝑨𝑨𝑤𝑤#⟩

19

In the final step, we apply a (third) matrix 𝑨𝑨𝑽𝑽	of learnable
weights and then compute the contextual embedding!

!𝑤𝑤$ = 𝑠𝑠!,#𝑨𝑨𝑽𝑽𝑤𝑤! + 𝑠𝑠&,#𝑨𝑨𝑽𝑽𝑤𝑤& +𝑠𝑠',#𝑨𝑨𝑽𝑽𝑤𝑤' +𝑠𝑠(,#𝑨𝑨𝑽𝑽𝑤𝑤(+𝑠𝑠),#𝑨𝑨𝑽𝑽𝑤𝑤) +𝑠𝑠#,#𝑨𝑨𝑽𝑽𝑤𝑤#

Tweak: Making Self-Attention Tunable

!𝑤𝑤$ = 𝑠𝑠!,#𝑤𝑤! + 𝑠𝑠&,#𝑤𝑤& +𝑠𝑠',#𝑤𝑤' +𝑠𝑠(,#𝑤𝑤(+𝑠𝑠),#𝑤𝑤) +𝑠𝑠#,#𝑤𝑤#

instead of

The values in matrices 𝑨𝑨𝑲𝑲, 𝑨𝑨𝑸𝑸, 𝑨𝑨𝑽𝑽 are weights learned
through optimization (SGD). This makes them “tunable” and
(as we will see shortly) enable the attention “heads” to
learn different patterns in the input

20

𝑠𝑠!,# =
exp⟨𝑤𝑤!, 𝑤𝑤#⟩	

∑$%!# exp⟨𝑤𝑤$, 𝑤𝑤#⟩
𝑠𝑠!,# =

exp⟨𝑨𝑨𝑲𝑲𝑤𝑤!, 𝑨𝑨𝑸𝑸𝑤𝑤#⟩	
∑$%!# exp⟨𝑨𝑨𝑲𝑲𝑤𝑤$, 𝑨𝑨𝑸𝑸𝑤𝑤#⟩

!𝑤𝑤$ = 𝑠𝑠!,#𝑨𝑨𝑽𝑽𝑤𝑤! + 𝑠𝑠&,#𝑨𝑨𝑽𝑽𝑤𝑤& +𝑠𝑠',#𝑨𝑨𝑽𝑽𝑤𝑤' +𝑠𝑠(,#𝑨𝑨𝑽𝑽𝑤𝑤(+𝑠𝑠),#𝑨𝑨𝑽𝑽𝑤𝑤) +𝑠𝑠#,#𝑨𝑨𝑽𝑽𝑤𝑤#

Summary: Making Self-Attention Tunable

This entire operation can be written compactly in this matrix equation (https://arxiv.org/pdf/1706.03762.pdf):

21

Positional input
embeddings

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Contextual
embeddings

Summary: Multi-Head Attention

Attention
Head

(𝐴𝐴!, 𝐴𝐴", 𝐴𝐴#)

Feed-
Forward

Layer

Attention
Head

(𝐴𝐴!, 𝐴𝐴", 𝐴𝐴#)

Concatenate
and Project

Important: Each attention head will have its own 𝐴𝐴(, 𝐴𝐴), 𝐴𝐴

22

Positional input
embeddings

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Contextual
embeddings

Transformer Encoder

Feed-
Forward

Layer

Multi-
head

Attention
Layer

23

Another tweak: Residual Connection

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Multi-
head

Attention
Layer

Feed-
Forward

Layer

+ +

We sum the input embedding to the output embedding of the Attention / Feed-
Forward Layers. This helps gradients flow better during backpropagation.

24

A final tweak: Layer Normalization

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Feed-
Forward

Layer

After the Attention / Feed-Forward Layers, we standardize (i.e., subtract mean and
divide by std) each embedding. This ensures that the weights stay small.

Multi-
head

Attention
Layer

+ +

25

Layer Normalization

(1) Calc mean and std dev
for each embedding and
standardize*

Layer Normalization

*subtract mean and divide by standard deviation
** see https://keras.io/api/layers/normalization_layers/layer_normalization/ for details

(2) Translate and rescale
each embedding
dimension**

26

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

Multi-
head

Attention
Layer

Feed-
Forward

Layer

+ +

Transformer Encoder

27

𝑤𝑤!
𝑤𝑤"
𝑤𝑤#
𝑤𝑤$
𝑤𝑤%
𝑤𝑤&

"𝑤𝑤!
"𝑤𝑤"
"𝑤𝑤#
"𝑤𝑤$
"𝑤𝑤%
"𝑤𝑤&

Multi-
head

Attention
Layer

Feed-
Forward

Layer

+ +

Transformer Encoders are stackable!

𝑵𝑵	×

28

The Transformer Encoder

https://arxiv.org/abs/1706.03762

Figures from "Attention is All You Need" © Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia
Polosukhin. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

29

TE*

fly
from
Boston
to

Positional
input
embeddings

Contextual
embeddings

Dense
(ReLU)

SM

Review: What is Optimized?

*Transformer Encoder

SM

SM

SM

O
O

O

B-fromloc.city_name

SM B-toloc.city_nameDenver

Softmax

Indicate 4-element embedding vectors

Weights optimized
by backprop

1. Positional embeddings
2. Stand-alone embeddings (unless pretrained and Trainable=False)
3. Matrices 𝐴𝐴!, 𝐴𝐴", 𝐴𝐴# for each attention head (inside TE)
4. Layer norm scale and bias parameters (inside TE)
5. Weights in Feed-Forward layers (inside TE)
6. Weights in Dense layers outside TE
7. Weights in final Softmax layer

30

Sequence classification

Sequence labeling

Sequence generation

Applying the Transformer – Common Use-
Cases

Transformer
Encoder“I loved the movie” Positive

Transformer
Encoder

“fly from Boston
to Denver”

Token Label

fly O

from O

Boston B-fromloc.city_name

to O

Denver B-toloc.city_name

Transformer Causal
Encoder*“I loved the movie”

“I loved the movie,
especially the
cinematography and
the background
score”

*covered in Lecture 9

31

Sequence classification

Sequence labeling

Sequence generation

We saw how to do Sequence Labeling

Transformer
Encoder“I loved the movie” Positive

Transformer
Encoder

“fly from Boston
to Denver”

Token Label

fly O

from O

Boston B-fromloc.city_name

to O

Denver B-toloc.city_name

Transformer Causal
Encoder“I loved the movie”

“I loved the movie,
especially the
cinematography and
the background
score”

32

Sequence classification

Sequence labeling

Sequence generation

Transformer
Encoder“I loved the movie” Positive

Transformer
Encoder

“fly from Boston
to Denver”

Token Label

fly O

from O

Boston B-fromloc.city_name

to O

Denver B-toloc.city_name

Transformer Causal
Encoder“I loved the movie”

“I loved the movie,
especially the
cinematography and
the background
score”

How can we do this?

33

Transformer
Encoder

Recall: The Transformer Encoder produces a
contextual embedding for each token in the input

i
loved

the
movie

Positional
input
embeddings

Contextual
embeddings

34

Transformer
Encoder

i
loved

the
movie

Positional
input
embeddings

Contextual
embeddings

If we could “summarize” the multiple contextual
embeddings into a single embedding that represents
the whole sentence …

35

Transformer
Encoder

i
loved

the
movie

Positional
input
embeddings

Contextual
embeddings

… we can feed the sentence embedding into a dense
ReLU layer, followed by a sigmoid (or softmax)

Dense
with ReLU

Dense
with

sigmoid
Positive!

36

Transformer
Encoder

i
loved

the
movie

Positional
input
embeddings

Contextual
embeddings

Dense
with ReLU

Dense
with

sigmoid
Positive!

How can we do this?

37

Transformer
Encoder

i
loved

the
movie

Positional
input
embeddings

Contextual
embeddings

Dense
with ReLU

Dense
with

sigmoid
Positive!

We can average the four to get

Any shortcomings?

38

Transformer
Encoder

i
loved
the

movie

Positional
input
embeddings

Contextual
embeddings

Dense
with ReLU

Dense
with

sigmoid
Positive!

A better approach: Add a special token at the
beginning of each sentence and just use its output
embedding as the sentence-embedding

<CLS>

The embedding of <CLS> will
come to represent the
sentence as a whole over the
course of training

If the input data for a task is natural language
text, we don’t have to restrict ourselves to just
the text we have.

Wouldn’t it be great to learn from “all the text
that’s out there”?

Self-Supervised Learning

Recall the Transfer Learning example from Lecture 4

41

ResNet 34*

*https://arxiv.org/abs/1512.03385

We fed the output of “headless Resnet” to a small NN

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

42

Input Layer =
smart

representations
from “headless”

ResNet

Hidden layer Output
layer

x1

xn

Handbag/
Shoe

We built a very accurate handbags/shoes classifier
with only 100 examples

43

Input Layer =
smart

representations
from “headless”

ResNet

Hidden layer Output
layer

x1

xn

Handbag/
Shoe

Why was this so effective?

We built a very accurate handbags/shoes classifier
with only 100 examples

Neural networks are Representation
learners

The output of every layer in a DNN can be thought of as a
transformed version of the ”raw” input. These transformed
versions of the input are called representations

x1

x2

xn

Output

From this perspective, a deep NN trained with Supervised
Learning learns many representations and a final regression
model

Regression

x1

x2

xn

+

If we think of a representation as an encoding of the raw input,
the part of the NN that produces that encoding can be viewed
as an encoder. A DNN “contains” many encoders.

Regression

x1

x2

xn

+

Encoder

What do representations/encoders
capture?

• Is it specific knowledge needed to connect the input to the
particular output the NN was trained to predict?

• Or is it general knowledge about the input data that can be
useful to predict other outputs?

Turns out representations do capture a lot
of general knowledge about the input data

https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

In a deep network trained to classify “everyday” objects into one of
1000 categories, the representations from the first three layers
correspond to lines, then edges, then more complex shapes

ImageNet training image © unknown. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

lines => edges, circles => faces!

Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations by Lee at al (2009)

In a deep network trained to detect faces, the
representations correspond to lines, edges, circles and
finally faces

Convolutional layers images © Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Leveraging the general knowledge in
these representations

• Since these representations are capturing various intrinsic aspects of the
images, they could be used for prediction tasks other than the ones they
were initially trained for.

• Since these representations are capturing various intrinsic aspects of the
images, they could be used for prediction tasks other than the ones they
were initially trained for.
• For example, the representations from the face-detection DNN could be plausibly

used to build an emotion-detection DNN.

Leveraging the general knowledge in
these representations

• Since these representations are capturing various intrinsic aspects of the
images, they could be used for prediction tasks other than the ones they
were initially trained for.
• For example, the representations from the face-detection DNN could be plausibly

used to build an emotion-detection DNN.

• If we can “somehow” get an encoder that generates good representations
of our input data, we can simply build a regression model with the
representations as input and labels as output

Leveraging the general knowledge in
these representations

• Since these representations are capturing various intrinsic aspects of the images,
they could be used for prediction tasks other than the ones they were initially
trained for.
• For example, the representations from the face-detection DNN could be plausibly used

to build an emotion-detection DNN.

• If we can “somehow” get an encoder that generates good representations of our
input data, we can simply build a regression model with the representations as
input and labels as output

• Since we won’t have to “spend” precious data on learning good representations
any more, we won’t need as much labeled data in the first place.

Leveraging the general knowledge in
these representations

This is exactly what happened with the handbags-
shoes example

56

ResNet 34*

*https://arxiv.org/abs/1512.03385

We used “headless Resnet” as an encoder that can take raw input and
transform it into useful representations

ResNet34 layers image © Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun/arXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

57

Input Layer =
smart

representations
from “headless”

ResNet

Hidden layer Output
layer

x1

xn

Handbag/
Shoe

By using these smart representations, we could build a very
accurate handbags/shoes classifier with only 100 examples

The general approach is to find a deep NN built on
similar inputs but different outputs

Same
inputs as
our problem
…

… but
different
outputs

Input Output

What comes out of the last layer (before the output
layer) of this deep NN is likely to be an excellent
representation of the input

Input

So we “chop off” the output layer and use the
resulting “headless model” as an encoder

X

Input

We can “attach” a new output layer to this encoder and train
the network with the actual output labels we care about!

New Output

Input

We can keep the encoder fixed and learn only
the weights of the new final layer.

New Output

Input New Output

… or fine-tune all the layers

To build such a generally useful
pretrained model, we need labeled
data.

For example, ResNet was trained on
everyday images which were labeled
with one of 1000 categories

64

To build a generally useful model (like
ResNet) for text data, we need to
(1) collect a lot of text data. This is no
problem – there’s plenty of text data
on the Internet e.g., Wikipedia.

65

To build a generally useful model (like
ResNet) for text data, we need to
(1) collect a lot of text data. This is no
problem – there’s plenty of text data
on the Internet e.g., Wikipedia.
(2) we need to define output labels for
every piece of text we feed into the
model.

66

For an input sentence, what should the
output label be?

67

A powerful approach to building pretrained models
without labeled data: Self-supervised Learning

The key idea behind self-supervised learning:

Predict a subset of the input data using the rest
of the input

Masking: A Self-supervised Learning
Technique

Original input Masked
Input

“Fake”
Label

1. We modify the original input data to create “fake” (input, label) pairs by masking a
part of the input and making it the label

Masked
Input

“Fake”
Label

Masked
Input

“Fake”
Label

2. We then use train a Deep Neural Network to predict the “fake” labels from the modified
inputs i.e., to fill in the blanks

DNN

Masked Inputs “Fake” Labels

Masking: A Self-supervised Learning
Technique

Modified Input “Fake” Labels

Masking Example

Original Input
“The mission of the MIT Sloan School of
Management is to develop principled,
innovative leaders who improve the world
and to generate ideas that advance
management practice.”

“The <MASK> of the MIT Sloan
School of <MASK> is to
develop principled, innovative
<MASK> who improve the
world and to <MASK> ideas
that advance <MASK>
practice.”

The mission of the MIT Sloan
School of Management is to
develop principled, innovative
leaders who improve the world and
to generate ideas that advance
management practice.

DNN

Now for the amazing part.

In the process of learning to “fill in the blanks”” successfully, the
Deep Neural Network learns a good representation of the input
data.

Now for the amazing part.

In the process of learning to “fill in the blanks”, the Deep Neural
Network learns a good representation of the input data.

This intuitively makes sense. To fill in the blanks successfully, the
model has to learn how the variables are related to each other.

Input
Output

Once a self-supervised model is built, we
can extract an encoder from it …

The ______ of the
MIT Sloan School of
________ is to
develop principled,
innovative ______
who improve the
world and to ______
ideas that advance
______ practice.

The mission of the MIT
Sloan School of
Management is to develop
principled, innovative
leaders who improve the
world and to generate ideas
that advance management
practice.

Encoder

Input Output

… and fine-tune it like we did in Transfer Learning

Modified Input “Fake” Labels

Original Input
“The mission of the MIT Sloan School of
Management is to develop principled,
innovative leaders who improve the world
and to generate ideas that advance
management practice.”

“The <MASK> of the MIT Sloan
School of <MASK> is to
develop principled, innovative
<MASK> who improve the
world and to <MASK> ideas
that advance <MASK>
practice.”

The mission of the MIT Sloan
School of Management is to
develop principled, innovative
leaders who improve the world and
to generate ideas that advance
management practice.

DNN

We can use a Transformer Encoder to build this
Self-supervised Learning model for text

77

TE

the
<MASK>
of
…

Positional
input
embeddings

Contextual
embeddings

Dense
(ReLU)

SM

SM

SM

SM

mission

SM<MASK>

Softmax

Masked Self-Supervised Learning is just a
sequence labeling problem

“The ______ of the MIT Sloan
School of Management is to
develop principled, innovative
leaders who improve the world
and to generate ideas that
advance ______ practice.”

practice SM

management

The DNN learns to predict the
masked words from the rest of the
sentence

78

TE

the
<MASK>
of
…

Positional
input
embeddings

Contextual
embeddings

Dense
(ReLU)

SM

SM

SM

SM

mission

SM<MASK>

Softmax

“The ______ of the MIT Sloan
School of Management is to
develop principled, innovative
leaders who improve the world
and to generate ideas that
advance ______ practice.”

practice SM

management

If we pretrain a Transformer model like this on
massive amounts of English text, we get …

… BERT!

79

https://arxiv.org/pdf/1810.04805.pdf

https://jalammar.github.io/illustrated-bert/

BERT figure by Jay Alammar on GitHub. License: CC BY-NC-SA.

BERT paper & figures © Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova/ArXiv. All rights reserved. This
content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

BERT uses the
Transformer
architecture

80https://arxiv.org/pdf/1810.04805.pdf

BERT paper © Jacob Devlin, Ming-Wei Chang, Kenton Lee,
Kristina Toutanova/ArXiv. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use.

81

Transformer
Encoder

i
loved
the

movie

Positional
input
embeddings

Contextual
embeddings

Dense
with ReLU

Dense
with

sigmoid
Positive!

Earlier, we recommended adding a special token at the
beginning of each sentence and just using its output
embedding as the sentence-embedding

<CLS>

The embedding of <CLS> will
come to represent the
sentence as a whole over the
course of training

BERT figure © Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova/ArXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Conveniently, BERT was trained with the <CLS> token
so it can be used for sequence classification “out of
the box”*

82

Sequence classification

Image credit: https://arxiv.org/pdf/1810.04805.pdf *HW2 colab

BERT figure © Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova/ArXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

BERT is an excellent pretrained model for sequence
labeling problems as well

83Image credit: https://arxiv.org/pdf/1810.04805.pdf

Sequence labeling
BERT figure © Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova/ArXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

A number of variations/improvements of
BERT have appeared over the years and
these can be used for many tasks.

The Sentence Transformers library is a
good resource

84https://www.sbert.net/index.html

85

To solve any sequence classification or sequence labeling problem
where the input is natural language text, we can use a model like
BERT as a pre-trained encoder. Label “a few hundred” examples,
attach the right final layers to BERT and fine-tune.

But if your particular problem is a “standard” NLP problem, this
may not be necessary. Numerous pretrained models are available
on various Hubs for all the “standard” NLP problems and you can
start using them without any fine-tuning at all.

The Hugging Face Hub is very popular

https://huggingface.co/models

Over 500,000 pretrained models
available!! (as of Feb 27, 2024)

Huggingface Colab

87

Transformers have proven to be an effective DNN
architecture across a vast array of domains

88

Information Retrieval/Search

Machine Translation

Speech Recognition

Text-to-Speech

Computer Vision

Reinforcement Learning

Generative AI (LLMs, Text-to-
image models,
Image Captioning, …)

Numerous special-purpose
systems (e.g., AlphaFold)

…

Transformers have proven to be an effective DNN
architecture across a vast array of domains

89

• The architecture of the Transformer block can be used as-is
for a wide range of applications

• What tends to vary from application to application is how the
inputs are encoded/tokenized in a form that can be fed to
the Transformer

Vision Transformer: A Transformer for Image
Classification

90

https://arxiv.org/pdf/2010.11929.pdf

Vision transformer/encoder figure © Alexey Dosovitskiy,Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby/ArXiv. All rights
reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

The Tab Transformer: : A Transformer
for Tabular Data

91http://arxiv.org/abs/2012.06678

Figure license: CC0 1.0.

Once the input has been transformed
into the “common language” of
embeddings, we can process them
without changing the architecture of
the Transformer Encoder block.

This turns out to very useful for multi-
modal data

92

Variable Value

Age 37 months

Supplier Acme

parts 13

… …

Transformer
Encoder

Stack

<CLS>

Dense
with ReLU

Dense with
sigmoid/
softmax

Predicted
Label

Example: A Transformer-based classifier for
multi-modal data

Desk chair image © Wayfair LLC. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Contrastive Learning (time permitting)

We can pretrain models on unlabeled text data by
using self-supervised learning to create artificial
labels (e.g., by masking words and recovering
them).

How can we pretrain models on unlabeled image
data?

For self-supervised learning with image inputs, a technique called
contrastive learning has been found to be very effective*

Contrastive Learning

The basic approach:
o For every original image, artificially

construct a pair of “augmented” images

o Train the network to “maximize
agreement” i.e., make the learned
representations of each augmented pair
“close” to each other but “far” from the
representations of the other pairs

DNN

DNN
(same as the one

above)

Maximize
agreement

Original
image

Representations

Augmented
images

Image credit: http://arxiv.org/abs/2002.05709

*A Simple Framework for Contrastive Learning of Visual Representations by Chen et al (2020)

Dog images © Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton/ArXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Data augmentation examples

Image credit: http://arxiv.org/abs/2002.05709

Dog images © Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton/ArXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

DNN

DNN
(same as the one

above)

Maximize
agreement

Original
image

Representations

Augmented
images

Image credit: http://arxiv.org/abs/2002.05709

DNN

Once the contrastive learning model is built, we can
extract an encoder from it easily and fine-tune it

Dog images © Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton/ArXiv. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

MIT OpenCourseWare
https://ocw.mit.edu

15.773 Hands-on Deep Learning
Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

