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[Review] Masking*: A Self-Supervised 
Learning technique for text data 

Original Input 
“The mission of the MIT Sloan School of 
Management is to develop principled, 
innovative leaders who improve the world 
and to generate ideas that advance 
management practice.” 

Modified Input 
“The <MASK> of the MIT Sloan 
School of <MASK> is to 
develop principled, innovative 
<MASK> who improve the 
world and to <MASK> ideas 
that advance <MASK> 
practice.” 

DNN 

“Fake” Labels 
The mission of the MIT Sloan 
School of Management is to 
develop principled, innovative 
leaders who improve the world and 
to generate ideas that advance 
management practice. 

*Sometimes referred to as “Masked Language Modeling” 



Another Self-Supervised Learning for text 
inputs: Next word prediction* 

Modified Input 

 
      

    
      

      
 

 

 

   
    

    
    

      

    
 

     

Original Input 
“The mission of the MIT Sloan School of 
Management is to develop principled, 
innovative leaders who improve the world 
and to generate ideas that advance 
management practice.” 

”Fake” Label 

mission The 
ofThe mission 
the The mission of 
MIT The mission of the 
Sloan The mission of the MIT 
School The mission of the MIT Sloan 

… 
DNN 

The mission of the MIT Sloan … management practice 

*Sometimes referred to as “Causal Language Modeling” 



Let’s try to use the Transformer Encoder to implement 
Next Word Prediction 

Original Input 
“The mission of the MIT Sloan School of 
Management is to develop principled, 
innovative leaders who improve the world 
and to generate ideas that advance 
management practice.” 

”Fake” Label Modified Input 

 
      

    
      

      
 

       
 

 

 

   
    

    
    

      

The 
The mission 

The mission of 
The mission of the 

The mission of the MIT 
The mission of the MIT Sloan 

… 
The mission of the MIT Sloan … management 

mission 

of 
the 

MIT 
Sloan 

School 

DNN 
practice 



      
  

First, each sentence gets transformed into 
an input-output pair 

Input 

the 
cat 
sat 
on 
the 

Output 

cat 
sat 
on 
the 
mat 
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The raw input gets tokenized* and 
converted into embeddings 

Input Positional Output 
input 
embeddings 

the cat 
cat sat 
sat on 
on the 
the mat 

6*not shown 



 

     
  

 

The embeddings are passed through 
several transformer blocks 

Input Positional 
input 
embeddings 

Output 

the cat 
cat sat 
sat 
on 
the 

on 
the 
mat 

TS* 

*Transformer stack 7 



 
 

      
   

The output of the transformer stack are contextual 
embeddings (as we have learned earlier) 

Input Positional Contextual Output 
input embeddings 
embeddings 

TS 

the 
cat 
sat 
on 
the 

cat 
sat 
on 
the 
mat 
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    The contextual embeddings are passed 
through one or more dense-RELU layers 

Input Positional Contextual Output 
input embeddings 
embeddings 

TS 
Dense 
(ReLU) 

the 
cat 
sat 
on 
the 

cat 
sat 
on 
the 
mat 
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Dense 
(ReLU) 

SM 

SM 

SM 

SM 

SM 

Each embedding coming out of the final dense layer 
is passed through its own softmax layer (with # of 
softmax categories = vocab size) 

Input Positional Contextual Softmax Output 
input embeddings 
embeddings 

the 
cat 
sat 
on 
the 

TS 

cat 
sat 
on 
the 
mat 
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Dense 
(ReLU) 

SM 

SM 

SM 

SM 

SM 

We use the categorical cross entropy loss function 
for training 

Input Positional Contextual Softmax Output 
input embeddings 
embeddings 

the 
cat 
sat 
on 
the 

TS 

cat 
sat 
on 
the 
mat 

-(1/7) [log(prob(“the”)) + log(prob(“cat”)) + … + log(prob(“<E>”))] 
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Dense 
(ReLU) 

SM 

SM 

SM 

SM 

SM 

Notice any problems with this setup? 

Input Positional Contextual Softmax Output 
input embeddings 
embeddings 

the 
cat 
sat 
on 
the 

TS 

cat 
sat 
on 
the 
mat 

12 
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Clue: Recall how self-attention works 

Attention(AQ, AK , AV ) 

w1 w2 w3 w4 w5 w6 

ŵ1 ŵ2 ŵ5 ŵ6ŵ3 ŵ4 

The contextual embedding for a word is 
based on ALL the words in the sentence 
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Dense 
(ReLU) 

SM 

SM 

SM 

SM 

SM 

The problem: To predict the next word, the 
architecture below can simply copy it from the input 
since it can “see” the whole sentence! 

Input Positional Contextual Softmax Output 
input embeddings 
embeddings 

the 
cat 
sat 
on 
the 

TS 

cat 
sat 
on 
the 
mat 
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TS 

Positional 
input 
embeddings 

Contextual 
embeddings 

Dense 
(ReLU) 

SM 

SM 

SM 

SM 

Softmax 

the 
cat 
sat 
on 
the 

cat 
sat 
on 
the 
mat SM 

Input Output 

The problem: To predict sat, the network should 
only use “the cat” 
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TS 

Positional 
input 
embeddings 

Contextual 
embeddings 

Dense 
(ReLU) 

SM 

SM 

SM 

SM 

Softmax 

the 
cat 
sat 
on 
the 

cat 
sat 
on 
the 
mat SM 

Input Output 

The problem: To predict sat, the network should only 
use “the cat”, but because Self-Attention can see sat, it 
will trivially predict the next word to be sat 

16 
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The solution: When calculating the 
contextual embedding of a word, give 
zero weight to “future” words



We can easily modify the Self-Attention layer 
to do this
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cat

sat

on

the

the

ca
t

sa
t

on th
e

th
e

cat

sat

on

the

the

ca
t

sa
t

on th
e

th
e

When calculating 
attention weights …

… we zero out the weights 
for the “future” words 
(and renormalize so the 
weights in each row still 
add up to 1.0)



For example: When calculating the contextual 
embedding for sat, only the embeddings for ”the”, 
“cat” and ”sat” will be weighted-averaged
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cat

sat

on

the

the

ca
t

sa
t

on th
e

th
e

cat

sat

on

the

the

ca
t

sa
t

on th
e

th
e

When calculating 
attention weights …

… we zero out the weights 
for the “future” words 
(and renormalize so the 
weights in each row still 
add up to 1.0)



This modification to Self-Attention is called 
Causal Self-Attention*
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cat

sat

on

the

the

ca
t

sa
t

on th
e

th
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cat

sat

on

the

the

ca
t

sa
t

on th
e

th
e

When calculating 
attention weights …

*Also called “Masked Self-Attention” since future words are being ‘masked’ from the calculation

… we zero out the weights 
for the “future” words 
(and renormalize so the 
weights in each row still 
add up to 1.0)
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the
cat
sat
on
the

cat
sat
on
the
mat

Input Output

This ensures that the prediction for a word will 
only depend on “past” words
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the
cat
sat
on
the

cat
sat
on
the
mat

Input Output

This ensures that the prediction for a word will 
only depend on “past” words



23

the
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cat
sat
on
the
mat

Input Output

This ensures that the prediction for a word will 
only depend on “past” words
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the
cat
sat
on
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cat
sat
on
the
mat

Input Output

This ensures that the prediction for a word will 
only depend on “past” words
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the
cat
sat
on
the

cat
sat
on
the
mat

Input Output

This ensures that the prediction for a word will 
only depend on “past” words
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Positional input 
embeddings

𝑤!
𝑤"
𝑤#
𝑤$
𝑤%
𝑤&

"𝑤!
"𝑤"
"𝑤#
"𝑤$
"𝑤%
"𝑤&

Contextual
embeddings

By replacing Self-Attention with Causal Self-Attention in the 
Transformer block, we get a Transformer Causal Encoder

Causal 
Attention 

Head

Feed-
Forward

Layer

Causal 
Attention 

Head

Concatenate 
and Project



The original Transformer paper has what’s 
called an encoder-decoder architecture

27

https://arxiv.org/abs/1706.03762

Encoder Decoder

This architecture was designed to solve 
sequence-to-sequence problems like Machine 
Translation.

We won’t cover sequence-to-sequence due to 
time constraints.

But note that the Decoder uses “Masked (aka 
Causal) Multi-Head Attention”. As a result …

Figures from "Attention is All You Need" © Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion 
Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



The Transformer Causal Encoder is also 
referred to as the Transformer Decoder. 

It is usually clear from context which 
version of the Decoder is being referred 
to.

28



29Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
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An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
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sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.
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An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.
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Transformer 
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Summary

Figures from "Attention is All You Need" © Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion 
Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.
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Positional
input 
embeddings

Contextual 
embeddings

Dense 
(ReLU)

Using Transformer Causal Encoders, we 
can train models for next word prediction

SM

SM

SM

SM

Softmax

the
cat
sat
on
the

cat
sat
on
the
matSM

Input Output

TCE*

*Transformer Causal Encoder stack
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TCE

Positional
input 
embeddings

Contextual 
embeddings

Dense 
(ReLU)

After training such a model, given any input 
sequence, the softmax for the last token …

Softmax

?SM

Input Output

It
was
a
dark
and



32*Using ‘word’ instead of ‘token’ for simplicity

… is a probability distribution over the vocabulary 

Next Word* Probability

aardvark 0.0003

…
rainy 0.3

…

stormy 0.6

…

zebra 0.00009



33*Details on how to do this coming shortly

We choose* a token from this table ...

Next Word* Probability

aardvark 0.0003

…
rainy 0.3

…

stormy 0.6

…

zebra 0.00009
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TCE

Positional
input 
embeddings

Contextual 
embeddings

Dense 
(ReLU)

Softmax

It
was
a
dark
and

stormy

Input Output

SM

… append it to the input and run it through the 
model …



35*Using ‘word’ instead of ‘token’ for simplicity

… generate a new softmax and choose the next 
word …

Next Word* Probability

aardvark 0.000008

…
day 0.03

…

night 0.95

…

zebra 0.00000003
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TCE

Positional
input 
embeddings

Contextual 
embeddings

Dense 
(ReLU)

Softmax

It
was
a
dark
and

stormy

Input Output

SM

… and repeat as needed.

night
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Sequence classification

Sequence labeling

Sequence generation

In other words, we know how to do 
Sequence Generation!

Transformer 
Encoder“I loved the movie” Positive

Transformer 
Encoder

“fly from Boston 
to Denver”

Token Label

fly O

from O

Boston B-fromloc.city_name 

to O

Denver B-toloc.city_name 

Transformer Causal 
Encoder“I loved the movie”

“I loved the movie, 
especially the 
cinematography and 
the background 
score”



Such sequence generation models 
trained on text sequences are called 
Autoregressive Language Models or 
Causal Language Models

38



GPT-3 is an autoregressive LLM!

39

• Architecture: 96 Transformer layers and 96 heads in each multi-
head attention layer! 

• Training data for next word prediction: ~30 billion sentences from 
the Internet and books

http://arxiv.org/abs/2005.14165



Sequence generation via LLMs like 
GPT-3 covers a wide array of use-cases

40

• Text generation: convert a text prompt into a paragraph that 
completes the prompt.

• Code generation: convert a text prompt into code

• Code documentation: augment code with comments

• Text summarization: convert a long document to a shorter 
version that retains the most important information.

• Question-answering: convert an input question into its answer.

• Chatbots: convert a dialogue prompt into a reply to the prompt 
or convert the history of a conversation into the next reply in 
the conversation.



Sidebar: If you would like to implement 
a causal LLM from scratch J …

41

https://jaykmody.com/blog/gpt-from-scratch/

https://www.youtube.com/watch?v=kCc8FmEb1nY

GPT Tokenizer, Byte Pair Encoding (BPE) related images, screenshots © Andrej Karpathy. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.



Decoding/Sampling Strategies

42



43

The process of choosing a token from the probability 
distribution generated by the softmax is called decoding

Next Word Probability

aardvark 0.0003
…

rainy 0.3
…

stormy 0.6

…
zebra 0.00009



Every time a token needs to be chosen, there 
are two simple options

Next Word Probability

aardvark 0.0003
…

rainy 0.3
…

stormy 0.6

…
zebra 0.00009

• Choose the highest 
probability token. This is 
called Greedy Decoding*.

• Randomly sample a token 
(in proportion to its 
probability)

* Not necessarily optimal. Beam Search can help. See https://www.borealisai.com/research-blogs/tutorial-
6-neural-natural-language-generation-decoding-algorithms/  for more

https://www.borealisai.com/research-blogs/tutorial-6-neural-natural-language-generation-decoding-algorithms/
https://www.borealisai.com/research-blogs/tutorial-6-neural-natural-language-generation-decoding-algorithms/


The decoding method should be matched to 
the type of response that’s needed 

• Greedy Decoding is appropriate when
• Factual accuracy of response is important
• Deterministic outputs are needed 

• Random sampling is better suited when
• Diversity and “creativity” of generated responses is 

important
• Stochastic outputs are OK 



Random sampling has shortcomings

46

• Our expectation is that the probability distribution from the softmax 
has a “short head” of high-probability “good” tokens and a “long tail” 
of low-probability “bad” tokens

• We would like random sampling to sample from the ‘head’ and not 
the ‘tail’

• While the probability of choosing any individual token in the tail is 
small, the probability of sampling some token from the tail can still be 
high

• If the LLM happens to sample a token from the tail, it may not be able 
to “recover” from its mistake and may go off the rails
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Prompt

Example: If the most probable token - 
“invited” - is chosen by random sampling 
…



… the response seems reasonable.

48

Prompt



However, if a low-probability token 
happens to be chosen …

49

Prompt



🤔

50

Prompt

Prompt



We can “tune” random sampling by first 
modifying the distribution and then sampling

51

• Top-K Sampling: Consider only the K most probable 
words. Renormalize their probabilities so they add up 
to 1. Do random sampling from this set.

op-P (aka Nucleus) Sampling: Consider the minimum set 
of words whose total probability exceeds P. Renormalize 
they add up to 1. Do random sampling from this set.

Temperature: By adjusting this parameter, we can make 
the ”head” of the distribution less or more important 
(iPad)



Top-K Sampling with K=2
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0.6

0.2

0.1

Pr
ob

ab
ili

ty

stormy rainy foggy cold drearyhumiddamp wet

Prompt: “It was a dark and ____”

0.75

0.25

Renormalized

stormy rainy

Sampling



We can “tune” random sampling by first 
modifying the distribution and then sampling

53

• Top-K Sampling: Consider only the K most probable words. 
Renormalize their probabilities so they add up to 1. Do 
random sampling from this set.

• Top-P (aka Nucleus) Sampling: Consider the minimum set 
of words whose total probability exceeds P. Renormalize 
their probabilities so they add up to 1. Do random 
sampling from this set.

Temperature: By adjusting this parameter, we can make the 
”head” of the distribution less or more important (iPad)



Top-P Sampling with P=0.9
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0.6

0.2

0.1

Pr
ob

ab
ili

ty

stormy rainy foggy cold drearyhumiddamp wet

Prompt: “It was a dark and ____”

0.67

0.22

Renormalized

stormy rainy

Sampling

0.11
foggy



We can “tune” random sampling by first 
modifying the distribution and then sampling

55

• Top-K Sampling: Consider only the K most probable words. 
Renormalize their probabilities so they add up to 1. Do 
random sampling from this set.

• Top-P (aka Nucleus) Sampling: Consider the minimum set 
of words whose total probability exceeds P. Renormalize 
their probabilities so they add up to 1. Do random 
sampling from this set.

• Temperature: By adjusting this parameter, we can make the 
”head” of the distribution less or more important



Temperature
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iPad



Quick Demo – OpenAI Playground

57

https://platform.openai.com/playground?mode=complete



LLM Tokenization: Byte Pair 
Encoding

58
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Standardize Tokenize Index Encode

Any disadvantages to what we 
described earlier?



Better Tokenization Schemes

60

• Modern generative models use tokenization 
schemes that try to address these disadvantages

• The GPT family uses Byte Pair Encoding (BPE). BERT 
uses WordPiece

• BPE finds a good “middle ground” between characters and 
complete words. Ending token vocabulary will be
• Characters
• Full words that occur frequently enough to be worth adding
• Sub-words (i.e., word fragments) that occur frequently enough to be worth 

adding
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Key Intuition: Start with each character as a token, and “merge” tokens that 
most frequently occur next to each other. Don’t merge across whitespace. Stop 
when the size of your vocabulary reaches a user-defined limit (we will assume 12 
in the example below*)

How BPE works

Training corpus The cat sat on the mat

After Standardization the cat sat on the mat

Starting corpus [t,h,e,_,c,a,t,_,s,a,t,_o,n,_t,h,e_m,a,t]

Starting vocabulary [t] [h] [e] [c] [a] [s] [o] [n] [m] 

*GPT-2/3 and GPT-3.5/4 appear to have a vocab size of ~50,000 and ~100,000 
respectively. Source.

https://www.lesswrong.com/posts/ChtGdxk9mwZ2Rxogt/smartyheadercode-anomalous-tokens-for-gpt3-5-and-gpt-4-1


62

Key Intuition: Start with each character as a token, and “merge” tokens that most frequently 
occur next to each other. Don’t merge across whitespace. Stop when the size of your 
vocabulary reaches a user-defined limit (we will assume 12 in the example below)

How BPE works*

Starting vocabulary [t] [h] [e] [c] [a] [s] [o] [n] [m] 

Starting corpus [t,h,e,_,c,a,t,_,s,a,t,_o,n,_t,h,e_m,a,t]

Frequency of adj tokens [t,h] – 2   [h,e] – 2    [c,a] – 1   [a,t] – 3   [s,a] – 1    [o,n] – 1    
[m,a] – 1

Vocabulary after 1st merge [t] [h] [e] [c] [a] [s] [o] [n] [m] [at]

Corpus after 1st merge t,h,e,_,c,at,_,s,at,_,o,n,_,t,h,e_,m,at

*For simplicity, we are ignoring whitespace in the example
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Key Intuition: Start with each character as a token, and “merge” tokens that most frequently 
occur next to each other. Don’t merge across whitespace. Stop when the size of your 
vocabulary reaches a user-defined limit (we will assume 12 in the example below)

How BPE works

Starting vocabulary [t] [h] [e] [c] [a] [s] [o] [n] [m] 

Starting corpus [t,h,e,_,c,a,t,_,s,a,t,_,o,n,_,t,h,e,_,m,a,t]

Frequency of adj tokens [t,h] – 2   [h,e] – 2    [c,a] – 1   [a,t] – 3   [s,a] – 1    [o,n] – 1    
[m,a] – 1

Vocabulary after 1st merge [t] [h] [e] [c] [a] [s] [o] [n] [m] [at]

Corpus after 1st merge t,h,e,_,c,at,_,s,at,_,o,n,_,t,h,e_,m,at

Frequency of adj tokens [t,h] – 2   [h,e] – 2    [c,at] – 1   [s,at] – 1    [o,n] – 1    [m,at] – 1

Vocabulary after 2nd  merge [t] [h] [e] [c] [a] [s] [o] [n] [m] [at][th]

Corpus after 2nd merge th,e,_,c,at,_,s,at,_,o,n,_,th,e,_,m,at
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Key Intuition: Start with each character as a token, and “merge” tokens that most frequently 
occur next to each other. Don’t merge across whitespace. Stop when the size of your 
vocabulary reaches a user-defined limit (we will assume 12 in the example below)

How BPE works

Starting vocabulary [t] [h] [e] [c] [a] [s] [o] [n] [m] 

Starting corpus [t,h,e,_,c,a,t,_,s,a,t,_,o,n,_,t,h,e,_,m,a,t]

Frequency of adj tokens [t,h] – 2   [h,e] – 2    [c,a] – 1   [a,t] – 3   [s,a] – 1    [o,n] – 1    
[m,a] – 1

Vocabulary after 1st merge [t] [h] [e] [c] [a] [s] [o] [n] [m] [at]

Corpus after 1st merge t,h,e,_,c,at,_,s,at,_,o,n,_,t,h,e_,m,at

Frequency of adj tokens [t,h] – 2   [h,e] – 2    [c,at] – 1   [s,at] – 1    [o,n] – 1    [m,at] – 1

Vocabulary after 2nd  merge [t] [h] [e] [c] [a] [s] [o] [n] [m] [at][th]

Corpus after 2nd merge th,e,_,c,at,_,s,at,_,o,n,_,th,e,_,m,at

Frequency of adj tokens [th,e] – 2  [c,at] – 1   [s,at] – 1   [o,n] – 1    [m,at] – 1

Vocabulary after 3rd merge [t] [h] [e] [c] [a] [s] [o] [n] [m] [at][th][the]

Corpus after 3rd merge the,_,c,at,_,s,at,_,o,n,_,the,_,m,at
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The merges happened in this order:  

• a,t => at

• t,h => th

• th,e => the

When a new piece of text arrives, the BPE tokenization will apply the merges in 
the same order. 

Example: [t,h,e,_,r,a,t]

• [t,h,e,_,r,at]

• [th,e,_,r,at]

• [the,_,r,at]

How BPE works



Quick Demo – Token Visualizer
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https://observablehq.com/@simonw/gpt-tokenizer



Sidebar: If you want to see how to 
code BPE from scratch … 
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Link Link

GPT Tokenizer, Byte Pair Encoding (BPE) related images, screenshots © Andrej Karpathy. All rights reserved. This content 
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

https://www.youtube.com/watch?v=zduSFxRajkE
https://github.com/karpathy/minbpe
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