

The “Deep Learning for NLP” Lecture Roadmap
Lecture 9: Large Language Models (1/2)

Lecture 5: Text Vectorization
and the Bag-of-Words Model
Lecture 6: Embeddings
Lecture 7: Transformers – (1/2)
Lecture 8: Transformers – (2/2)

15.S04: Hands-on Deep Learning
Spring 2024
Farias, Ramakrishnan

[Review] Masking*: A Self-Supervised
Learning technique for text data

Original Input
“The mission of the MIT Sloan School of
Management is to develop principled,
innovative leaders who improve the world
and to generate ideas that advance
management practice.”

Modified Input
“The <MASK> of the MIT Sloan
School of <MASK> is to
develop principled, innovative
<MASK> who improve the
world and to <MASK> ideas
that advance <MASK>
practice.”

DNN

“Fake” Labels
The mission of the MIT Sloan
School of Management is to
develop principled, innovative
leaders who improve the world and
to generate ideas that advance
management practice.

*Sometimes referred to as “Masked Language Modeling”

Another Self-Supervised Learning for text
inputs: Next word prediction*

Modified Input

Original Input
“The mission of the MIT Sloan School of
Management is to develop principled,
innovative leaders who improve the world
and to generate ideas that advance
management practice.”

”Fake” Label

mission The
ofThe mission
the The mission of
MIT The mission of the
Sloan The mission of the MIT
School The mission of the MIT Sloan

…
DNN

The mission of the MIT Sloan … management practice

*Sometimes referred to as “Causal Language Modeling”

Let’s try to use the Transformer Encoder to implement
Next Word Prediction

Original Input
“The mission of the MIT Sloan School of
Management is to develop principled,
innovative leaders who improve the world
and to generate ideas that advance
management practice.”

”Fake” Label Modified Input

The
The mission

The mission of
The mission of the

The mission of the MIT
The mission of the MIT Sloan

…
The mission of the MIT Sloan … management

mission

of
the

MIT
Sloan

School

DNN
practice

First, each sentence gets transformed into
an input-output pair

Input

the
cat
sat
on
the

Output

cat
sat
on
the
mat

5

The raw input gets tokenized* and
converted into embeddings

Input Positional Output
input
embeddings

the cat
cat sat
sat on
on the
the mat

6*not shown

The embeddings are passed through
several transformer blocks

Input Positional
input
embeddings

Output

the cat
cat sat
sat
on
the

on
the
mat

TS*

*Transformer stack 7

The output of the transformer stack are contextual
embeddings (as we have learned earlier)

Input Positional Contextual Output
input embeddings
embeddings

TS

the
cat
sat
on
the

cat
sat
on
the
mat

8

 The contextual embeddings are passed
through one or more dense-RELU layers

Input Positional Contextual Output
input embeddings
embeddings

TS
Dense
(ReLU)

the
cat
sat
on
the

cat
sat
on
the
mat

9

Dense
(ReLU)

SM

SM

SM

SM

SM

Each embedding coming out of the final dense layer
is passed through its own softmax layer (with # of
softmax categories = vocab size)

Input Positional Contextual Softmax Output
input embeddings
embeddings

the
cat
sat
on
the

TS

cat
sat
on
the
mat

10

Dense
(ReLU)

SM

SM

SM

SM

SM

We use the categorical cross entropy loss function
for training

Input Positional Contextual Softmax Output
input embeddings
embeddings

the
cat
sat
on
the

TS

cat
sat
on
the
mat

-(1/7) [log(prob(“the”)) + log(prob(“cat”)) + … + log(prob(“<E>”))]

11

Dense
(ReLU)

SM

SM

SM

SM

SM

Notice any problems with this setup?

Input Positional Contextual Softmax Output
input embeddings
embeddings

the
cat
sat
on
the

TS

cat
sat
on
the
mat

12

<latexit sha1_base64="RS0H3Qbg12CGcWHY9uTdi0bJ5rs=">AAACB3icbVDLSgMxFL1TX7W+Rl0KEixCBSkzoqi7FjeCmxbsA9ppyaRpG5p5kGSEMnTnxl9x40IRt/6CO//GTDsLbb2QcDjn3puc44acSWVZ30ZmaXlldS27ntvY3NreMXf36jKIBKE1EvBANF0sKWc+rSmmOG2GgmLP5bThjm4SvfFAhWSBf6/GIXU8PPBZnxGsNNU1D+O28FBZKeonxKRQ7lRPUblzl1z1k66Zt4rWtNAisFOQh7QqXfOr3QtI5Ol1hGMpW7YVKifGQjHC6STXjiQNMRnhAW1p6GOPSiee+pigY830UD8Q+vgKTdnfEzH2pBx7ru70sBrKeS0h/9NakepfOTHzw0j7JLOH+hFHKkBJKKjHBCWKjzXARDD9V0SGWGCidHQ5HYI9b3kR1M+K9kXRqp7nS9dpHFk4gCMogA2XUIJbqEANCDzCM7zCm/FkvBjvxsesNWOkM/vwp4zPH0AVl5M=</latexit>

<latexit sha1_base64="JXU7pC6t9DwMAKf9ua+C3XoXQWI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+65FrI2L1gOOE+xEdKBEKRtFK9089r1euuFV3BrJMvJxUIEe9V/7q9mOWRlwhk9SYjucm6GdUo2CST0rd1PCEshEd8I6likbc+Nns1Ak5sUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06JRuCt/jyMmmeVb2Lqnt3Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wcIx42a</latexit> <latexit sha1_base64="xdlTd4bWjF2nCxufXyv85BRtSls=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvBi8eK9gPaUDbbTbt0swm7E6WE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9ci1EbF6wHHC/YgOlAgFo2il+6detVcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns1Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06RRuCt/jyMmlWK95Fxb07L9eu8zgKcAwncAYeXEINbqEODWAwgGd4hTdHOi/Ou/Mxb11x8pkj+APn8wcKS42b</latexit> <latexit sha1_base64="3agbFgHTa8uuJSqPneIoqGGE8eA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QL0FvHiMaB6QLGF20psMmZ1dZmaVsOQTvHhQxKtf5M2/cZLsQaMFDUVVN91dQSK4Nq775RSWlldW14rrpY3Nre2d8u5eU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj66nfekCleSzvzThBP6IDyUPOqLHS3WPvtFeuuFV3BvKXeDmpQI56r/zZ7ccsjVAaJqjWHc9NjJ9RZTgTOCl1U40JZSM6wI6lkkao/Wx26oQcWaVPwljZkobM1J8TGY20HkeB7YyoGepFbyr+53VSE176GZdJalCy+aIwFcTEZPo36XOFzIixJZQpbm8lbEgVZcamU7IheIsv/yXNk6p3XnVvzyq1qzyOIhzAIRyDBxdQgxuoQwMYDOAJXuDVEc6z8+a8z1sLTj6zD7/gfHwDC8+NnA==</latexit> <latexit sha1_base64="LaWsWEe3IYwp1MKA8MjxQtGvrtM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW8FLx4r2g9oQ9lsN+3SzSbsTpQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+65FrI2L1gOOE+xEdKBEKRtFK90+981654lbdGcgy8XJSgRz1Xvmr249ZGnGFTFJjOp6boJ9RjYJJPil1U8MTykZ0wDuWKhpx42ezUyfkxCp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF75mVBJilyx+aIwlQRjMv2b9IXmDOXYEsq0sLcSNqSaMrTplGwI3uLLy6R5VvUuqu7deaV2ncdRhCM4hlPw4BJqcAt1aACDATzDK7w50nlx3p2PeWvByWcO4Q+czx8NU42d</latexit> <latexit sha1_base64="qn3w48DKxPhvjeDKCj1XgWKQ7LI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KolY1FvBi8eK9gPaUDbbTbt0swm7E6WE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9ci1EbF6wHHC/YgOlAgFo2il+6detVcquxV3BrJMvJyUIUe9V/rq9mOWRlwhk9SYjucm6GdUo2CST4rd1PCEshEd8I6likbc+Nns1Ak5tUqfhLG2pZDM1N8TGY2MGUeB7YwoDs2iNxX/8zophld+JlSSIldsvihMJcGYTP8mfaE5Qzm2hDIt7K2EDammDG06RRuCt/jyMmmeV7xqxb27KNeu8zgKcAwncAYeXEINbqEODWAwgGd4hTdHOi/Ou/Mxb11x8pkj+APn8wcO142e</latexit> <latexit sha1_base64="uShROJ3FD7IIcWYmMFy6m78h7VM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKz1vAi8eI5gHJEmYnvcmQ2dllZlYJSz7BiwdFvPpF3vwbJ8keNFrQUFR1090VJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtB1Sax/LejBP0IzqQPOSMGivdPfbOe+WKW3VnIH+Jl5MK5Kj3yp/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiRVfokjJUtachM/TmR0UjrcRTYzoiaoV70puJ/Xic14aWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyX9I8qXpnVff2tFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcQW42f</latexit>

<latexit sha1_base64="/iFsdLOT9tkaTAttKro/CGbJNHw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW8FLx4r2A9oQ9lsN+3SzSbuTpQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+65FrI2J1j+OE+xEdKBEKRtFK7e6QInnqeb1yxa26M5Bl4uWkAjnqvfJXtx+zNOIKmaTGdDw3QT+jGgWTfFLqpoYnlI3ogHcsVTTixs9m907IiVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo86QvNGcqxJZRpYW8lbEg1ZWgjKtkQvMWXl0nzrOpdVN2780rtOo+jCEdwDKfgwSXU4Bbq0AAGEp7hFd6cB+fFeXc+5q0FJ585hD9wPn8AZv2PhQ==</latexit>

<latexit sha1_base64="TV25YAX6ACXxu5lJWc+pTUpN71A=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvBi8cK9gPaUDbbTbt0s4m7E6WE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9ci1EbG6x3HC/YgOlAgFo2ildndIkTz1qr1S2a24M5Bl4uWkDDnqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9m907IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo86QvNGcqxJZRpYW8lbEg1ZWgjKtoQvMWXl0mzWvEuKu7debl2ncdRgGM4gTPw4BJqcAt1aAADCc/wCm/Og/PivDsf89YVJ585gj9wPn8AaIGPhg==</latexit>

<latexit sha1_base64="yaaHi7VeplJleRmqJzB20QWGpFA=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KolY1FvBi8cK9gPaUDbbTbt0s4m7E6WE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGN1O/9ci1EbG6x3HC/YgOlAgFo2ildndIkTz1qr1S2a24M5Bl4uWkDDnqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9m907IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo86QvNGcqxJZRpYW8lbEg1ZWgjKtoQvMWXl0nzvOJVK+7dRbl2ncdRgGM4gTPw4BJqcAt1aAADCc/wCm/Og/PivDsf89YVJ585gj9wPn8AbQ2PiQ==</latexit>

<latexit sha1_base64="zPCKYoTTq8bqoYk0hKuxVsAbonc=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV3xeQt48RjBPCBZwuxkNhkyO7vO9CphyU948aCIV3/Hm3/jJNmDJhY0FFXddHcFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6ea8TqLZaxbATVcCsXrKFDyVqI5jQLJm8HwZuI3H7k2Ilb3OEq4H9G+EqFgFK3U6gwokqfuRbdUdivuFGSReDkpQ45at/TV6cUsjbhCJqkxbc9N0M+oRsEkHxc7qeEJZUPa521LFY248bPpvWNybJUeCWNtSyGZqr8nMhoZM4oC2xlRHJh5byL+57VTDK/8TKgkRa7YbFGYSoIxmTxPekJzhnJkCWVa2FsJG1BNGdqIijYEb/7lRdI4rXjnFffurFy9zuMowCEcwQl4cAlVuIUa1IGBhGd4hTfnwXlx3p2PWeuSk88cwB84nz9ukY+K</latexit><latexit sha1_base64="XLKFeEBEESD/EfZ3bMYvmEIPtRg=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hV0fqLeAF48RzAOSJcxOZpMhs7PrTK8SlvyEFw+KePV3vPk3TpI9aGJBQ1HVTXdXkEhh0HW/naXlldW19cJGcXNre2e3tLffMHGqGa+zWMa6FVDDpVC8jgIlbyWa0yiQvBkMbyZ+85FrI2J1j6OE+xHtKxEKRtFKrc6AInnqnnVLZbfiTkEWiZeTMuSodUtfnV7M0ogrZJIa0/bcBP2MahRM8nGxkxqeUDakfd62VNGIGz+b3jsmx1bpkTDWthSSqfp7IqORMaMosJ0RxYGZ9ybif147xfDKz4RKUuSKzRaFqSQYk8nzpCc0ZyhHllCmhb2VsAHVlKGNqGhD8OZfXiSN04p3UXHvzsvV6zyOAhzCEZyAB5dQhVuoQR0YSHiGV3hzHpwX5935mLUuOfnMAfyB8/kDagWPhw==</latexit>

<latexit sha1_base64="LDM0Hg9z/AZ5mCCguKWry6m257o=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW8FLx4r2A9oQ9lsN+3SzSbuTpQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+65FrI2J1j+OE+xEdKBEKRtFK7e6QInnqnffKFbfqzkCWiZeTCuSo98pf3X7M0ogrZJIa0/HcBP2MahRM8kmpmxqeUDaiA96xVNGIGz+b3TshJ1bpkzDWthSSmfp7IqORMeMosJ0RxaFZ9Kbif14nxfDKz4RKUuSKzReFqSQYk+nzpC80ZyjHllCmhb2VsCHVlKGNqGRD8BZfXibNs6p3UXXvziu16zyOIhzBMZyCB5dQg1uoQwMYSHiGV3hzHpwX5935mLcWnHzmEP7A+fwBa4mPiA==</latexit>

Clue: Recall how self-attention works

Attention(AQ, AK , AV)

w1 w2 w3 w4 w5 w6

ŵ1 ŵ2 ŵ5 ŵ6ŵ3 ŵ4

The contextual embedding for a word is
based on ALL the words in the sentence

13

Dense
(ReLU)

SM

SM

SM

SM

SM

The problem: To predict the next word, the
architecture below can simply copy it from the input
since it can “see” the whole sentence!

Input Positional Contextual Softmax Output
input embeddings
embeddings

the
cat
sat
on
the

TS

cat
sat
on
the
mat

14

TS

Positional
input
embeddings

Contextual
embeddings

Dense
(ReLU)

SM

SM

SM

SM

Softmax

the
cat
sat
on
the

cat
sat
on
the
mat SM

Input Output

The problem: To predict sat, the network should
only use “the cat”

15

TS

Positional
input
embeddings

Contextual
embeddings

Dense
(ReLU)

SM

SM

SM

SM

Softmax

the
cat
sat
on
the

cat
sat
on
the
mat SM

Input Output

The problem: To predict sat, the network should only
use “the cat”, but because Self-Attention can see sat, it
will trivially predict the next word to be sat

16

17

The solution: When calculating the
contextual embedding of a word, give
zero weight to “future” words

We can easily modify the Self-Attention layer
to do this

18

cat

sat

on

the

the

ca
t

sa
t

on th
e

th
e

cat

sat

on

the

the

ca
t

sa
t

on th
e

th
e

When calculating
attention weights …

… we zero out the weights
for the “future” words
(and renormalize so the
weights in each row still
add up to 1.0)

For example: When calculating the contextual
embedding for sat, only the embeddings for ”the”,
“cat” and ”sat” will be weighted-averaged

19

cat

sat

on

the

the

ca
t

sa
t

on th
e

th
e

cat

sat

on

the

the

ca
t

sa
t

on th
e

th
e

When calculating
attention weights …

… we zero out the weights
for the “future” words
(and renormalize so the
weights in each row still
add up to 1.0)

This modification to Self-Attention is called
Causal Self-Attention*

20

cat

sat

on

the

the

ca
t

sa
t

on th
e

th
e

cat

sat

on

the

the

ca
t

sa
t

on th
e

th
e

When calculating
attention weights …

*Also called “Masked Self-Attention” since future words are being ‘masked’ from the calculation

… we zero out the weights
for the “future” words
(and renormalize so the
weights in each row still
add up to 1.0)

21

the
cat
sat
on
the

cat
sat
on
the
mat

Input Output

This ensures that the prediction for a word will
only depend on “past” words

22

the
cat
sat
on
the

cat
sat
on
the
mat

Input Output

This ensures that the prediction for a word will
only depend on “past” words

23

the
cat
sat
on
the

cat
sat
on
the
mat

Input Output

This ensures that the prediction for a word will
only depend on “past” words

24

the
cat
sat
on
the

cat
sat
on
the
mat

Input Output

This ensures that the prediction for a word will
only depend on “past” words

25

the
cat
sat
on
the

cat
sat
on
the
mat

Input Output

This ensures that the prediction for a word will
only depend on “past” words

26

Positional input
embeddings

𝑤!
𝑤"
𝑤#
𝑤$
𝑤%
𝑤&

"𝑤!
"𝑤"
"𝑤#
"𝑤$
"𝑤%
"𝑤&

Contextual
embeddings

By replacing Self-Attention with Causal Self-Attention in the
Transformer block, we get a Transformer Causal Encoder

Causal
Attention

Head

Feed-
Forward

Layer

Causal
Attention

Head

Concatenate
and Project

The original Transformer paper has what’s
called an encoder-decoder architecture

27

https://arxiv.org/abs/1706.03762

Encoder Decoder

This architecture was designed to solve
sequence-to-sequence problems like Machine
Translation.

We won’t cover sequence-to-sequence due to
time constraints.

But note that the Decoder uses “Masked (aka
Causal) Multi-Head Attention”. As a result …

Figures from "Attention is All You Need" © Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

The Transformer Causal Encoder is also
referred to as the Transformer Decoder.

It is usually clear from context which
version of the Decoder is being referred
to.

28

29Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

https://arxiv.org/abs/1706.03762

Causal
Multi-Head
Attention

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Transformer
Encoder

Transformer
Causal
Encoder/
Transformer
Decoder

Summary

Figures from "Attention is All You Need" © Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

30

Positional
input
embeddings

Contextual
embeddings

Dense
(ReLU)

Using Transformer Causal Encoders, we
can train models for next word prediction

SM

SM

SM

SM

Softmax

the
cat
sat
on
the

cat
sat
on
the
matSM

Input Output

TCE*

*Transformer Causal Encoder stack

31

TCE

Positional
input
embeddings

Contextual
embeddings

Dense
(ReLU)

After training such a model, given any input
sequence, the softmax for the last token …

Softmax

?SM

Input Output

It
was
a
dark
and

32*Using ‘word’ instead of ‘token’ for simplicity

… is a probability distribution over the vocabulary

Next Word* Probability

aardvark 0.0003

…
rainy 0.3

…

stormy 0.6

…

zebra 0.00009

33*Details on how to do this coming shortly

We choose* a token from this table ...

Next Word* Probability

aardvark 0.0003

…
rainy 0.3

…

stormy 0.6

…

zebra 0.00009

34

TCE

Positional
input
embeddings

Contextual
embeddings

Dense
(ReLU)

Softmax

It
was
a
dark
and

stormy

Input Output

SM

… append it to the input and run it through the
model …

35*Using ‘word’ instead of ‘token’ for simplicity

… generate a new softmax and choose the next
word …

Next Word* Probability

aardvark 0.000008

…
day 0.03

…

night 0.95

…

zebra 0.00000003

36

TCE

Positional
input
embeddings

Contextual
embeddings

Dense
(ReLU)

Softmax

It
was
a
dark
and

stormy

Input Output

SM

… and repeat as needed.

night

37

Sequence classification

Sequence labeling

Sequence generation

In other words, we know how to do
Sequence Generation!

Transformer
Encoder“I loved the movie” Positive

Transformer
Encoder

“fly from Boston
to Denver”

Token Label

fly O

from O

Boston B-fromloc.city_name

to O

Denver B-toloc.city_name

Transformer Causal
Encoder“I loved the movie”

“I loved the movie,
especially the
cinematography and
the background
score”

Such sequence generation models
trained on text sequences are called
Autoregressive Language Models or
Causal Language Models

38

GPT-3 is an autoregressive LLM!

39

• Architecture: 96 Transformer layers and 96 heads in each multi-
head attention layer!

• Training data for next word prediction: ~30 billion sentences from
the Internet and books

http://arxiv.org/abs/2005.14165

Sequence generation via LLMs like
GPT-3 covers a wide array of use-cases

40

• Text generation: convert a text prompt into a paragraph that
completes the prompt.

• Code generation: convert a text prompt into code

• Code documentation: augment code with comments

• Text summarization: convert a long document to a shorter
version that retains the most important information.

• Question-answering: convert an input question into its answer.

• Chatbots: convert a dialogue prompt into a reply to the prompt
or convert the history of a conversation into the next reply in
the conversation.

Sidebar: If you would like to implement
a causal LLM from scratch J …

41

https://jaykmody.com/blog/gpt-from-scratch/

https://www.youtube.com/watch?v=kCc8FmEb1nY

GPT Tokenizer, Byte Pair Encoding (BPE) related images, screenshots © Andrej Karpathy. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Decoding/Sampling Strategies

42

43

The process of choosing a token from the probability
distribution generated by the softmax is called decoding

Next Word Probability

aardvark 0.0003
…

rainy 0.3
…

stormy 0.6

…
zebra 0.00009

Every time a token needs to be chosen, there
are two simple options

Next Word Probability

aardvark 0.0003
…

rainy 0.3
…

stormy 0.6

…
zebra 0.00009

• Choose the highest
probability token. This is
called Greedy Decoding*.

• Randomly sample a token
(in proportion to its
probability)

* Not necessarily optimal. Beam Search can help. See https://www.borealisai.com/research-blogs/tutorial-
6-neural-natural-language-generation-decoding-algorithms/ for more

https://www.borealisai.com/research-blogs/tutorial-6-neural-natural-language-generation-decoding-algorithms/
https://www.borealisai.com/research-blogs/tutorial-6-neural-natural-language-generation-decoding-algorithms/

The decoding method should be matched to
the type of response that’s needed

• Greedy Decoding is appropriate when
• Factual accuracy of response is important
• Deterministic outputs are needed

• Random sampling is better suited when
• Diversity and “creativity” of generated responses is

important
• Stochastic outputs are OK

Random sampling has shortcomings

46

• Our expectation is that the probability distribution from the softmax
has a “short head” of high-probability “good” tokens and a “long tail”
of low-probability “bad” tokens

• We would like random sampling to sample from the ‘head’ and not
the ‘tail’

• While the probability of choosing any individual token in the tail is
small, the probability of sampling some token from the tail can still be
high

• If the LLM happens to sample a token from the tail, it may not be able
to “recover” from its mistake and may go off the rails

47

Prompt

Example: If the most probable token -
“invited” - is chosen by random sampling
…

… the response seems reasonable.

48

Prompt

However, if a low-probability token
happens to be chosen …

49

Prompt

🤔

50

Prompt

Prompt

We can “tune” random sampling by first
modifying the distribution and then sampling

51

• Top-K Sampling: Consider only the K most probable
words. Renormalize their probabilities so they add up
to 1. Do random sampling from this set.

op-P (aka Nucleus) Sampling: Consider the minimum set
of words whose total probability exceeds P. Renormalize
they add up to 1. Do random sampling from this set.

Temperature: By adjusting this parameter, we can make
the ”head” of the distribution less or more important
(iPad)

Top-K Sampling with K=2

52

0.6

0.2

0.1

Pr
ob

ab
ili

ty

stormy rainy foggy cold drearyhumiddamp wet

Prompt: “It was a dark and ____”

0.75

0.25

Renormalized

stormy rainy

Sampling

We can “tune” random sampling by first
modifying the distribution and then sampling

53

• Top-K Sampling: Consider only the K most probable words.
Renormalize their probabilities so they add up to 1. Do
random sampling from this set.

• Top-P (aka Nucleus) Sampling: Consider the minimum set
of words whose total probability exceeds P. Renormalize
their probabilities so they add up to 1. Do random
sampling from this set.

Temperature: By adjusting this parameter, we can make the
”head” of the distribution less or more important (iPad)

Top-P Sampling with P=0.9

54

0.6

0.2

0.1

Pr
ob

ab
ili

ty

stormy rainy foggy cold drearyhumiddamp wet

Prompt: “It was a dark and ____”

0.67

0.22

Renormalized

stormy rainy

Sampling

0.11
foggy

We can “tune” random sampling by first
modifying the distribution and then sampling

55

• Top-K Sampling: Consider only the K most probable words.
Renormalize their probabilities so they add up to 1. Do
random sampling from this set.

• Top-P (aka Nucleus) Sampling: Consider the minimum set
of words whose total probability exceeds P. Renormalize
their probabilities so they add up to 1. Do random
sampling from this set.

• Temperature: By adjusting this parameter, we can make the
”head” of the distribution less or more important

Temperature

56

iPad

Quick Demo – OpenAI Playground

57

https://platform.openai.com/playground?mode=complete

LLM Tokenization: Byte Pair
Encoding

58

59

Standardize Tokenize Index Encode

Any disadvantages to what we
described earlier?

Better Tokenization Schemes

60

• Modern generative models use tokenization
schemes that try to address these disadvantages

• The GPT family uses Byte Pair Encoding (BPE). BERT
uses WordPiece

• BPE finds a good “middle ground” between characters and
complete words. Ending token vocabulary will be
• Characters
• Full words that occur frequently enough to be worth adding
• Sub-words (i.e., word fragments) that occur frequently enough to be worth

adding

61

Key Intuition: Start with each character as a token, and “merge” tokens that
most frequently occur next to each other. Don’t merge across whitespace. Stop
when the size of your vocabulary reaches a user-defined limit (we will assume 12
in the example below*)

How BPE works

Training corpus The cat sat on the mat

After Standardization the cat sat on the mat

Starting corpus [t,h,e,_,c,a,t,_,s,a,t,_o,n,_t,h,e_m,a,t]

Starting vocabulary [t] [h] [e] [c] [a] [s] [o] [n] [m]

*GPT-2/3 and GPT-3.5/4 appear to have a vocab size of ~50,000 and ~100,000
respectively. Source.

https://www.lesswrong.com/posts/ChtGdxk9mwZ2Rxogt/smartyheadercode-anomalous-tokens-for-gpt3-5-and-gpt-4-1

62

Key Intuition: Start with each character as a token, and “merge” tokens that most frequently
occur next to each other. Don’t merge across whitespace. Stop when the size of your
vocabulary reaches a user-defined limit (we will assume 12 in the example below)

How BPE works*

Starting vocabulary [t] [h] [e] [c] [a] [s] [o] [n] [m]

Starting corpus [t,h,e,_,c,a,t,_,s,a,t,_o,n,_t,h,e_m,a,t]

Frequency of adj tokens [t,h] – 2 [h,e] – 2 [c,a] – 1 [a,t] – 3 [s,a] – 1 [o,n] – 1
[m,a] – 1

Vocabulary after 1st merge [t] [h] [e] [c] [a] [s] [o] [n] [m] [at]

Corpus after 1st merge t,h,e,_,c,at,_,s,at,_,o,n,_,t,h,e_,m,at

*For simplicity, we are ignoring whitespace in the example

63

Key Intuition: Start with each character as a token, and “merge” tokens that most frequently
occur next to each other. Don’t merge across whitespace. Stop when the size of your
vocabulary reaches a user-defined limit (we will assume 12 in the example below)

How BPE works

Starting vocabulary [t] [h] [e] [c] [a] [s] [o] [n] [m]

Starting corpus [t,h,e,_,c,a,t,_,s,a,t,_,o,n,_,t,h,e,_,m,a,t]

Frequency of adj tokens [t,h] – 2 [h,e] – 2 [c,a] – 1 [a,t] – 3 [s,a] – 1 [o,n] – 1
[m,a] – 1

Vocabulary after 1st merge [t] [h] [e] [c] [a] [s] [o] [n] [m] [at]

Corpus after 1st merge t,h,e,_,c,at,_,s,at,_,o,n,_,t,h,e_,m,at

Frequency of adj tokens [t,h] – 2 [h,e] – 2 [c,at] – 1 [s,at] – 1 [o,n] – 1 [m,at] – 1

Vocabulary after 2nd merge [t] [h] [e] [c] [a] [s] [o] [n] [m] [at][th]

Corpus after 2nd merge th,e,_,c,at,_,s,at,_,o,n,_,th,e,_,m,at

64

Key Intuition: Start with each character as a token, and “merge” tokens that most frequently
occur next to each other. Don’t merge across whitespace. Stop when the size of your
vocabulary reaches a user-defined limit (we will assume 12 in the example below)

How BPE works

Starting vocabulary [t] [h] [e] [c] [a] [s] [o] [n] [m]

Starting corpus [t,h,e,_,c,a,t,_,s,a,t,_,o,n,_,t,h,e,_,m,a,t]

Frequency of adj tokens [t,h] – 2 [h,e] – 2 [c,a] – 1 [a,t] – 3 [s,a] – 1 [o,n] – 1
[m,a] – 1

Vocabulary after 1st merge [t] [h] [e] [c] [a] [s] [o] [n] [m] [at]

Corpus after 1st merge t,h,e,_,c,at,_,s,at,_,o,n,_,t,h,e_,m,at

Frequency of adj tokens [t,h] – 2 [h,e] – 2 [c,at] – 1 [s,at] – 1 [o,n] – 1 [m,at] – 1

Vocabulary after 2nd merge [t] [h] [e] [c] [a] [s] [o] [n] [m] [at][th]

Corpus after 2nd merge th,e,_,c,at,_,s,at,_,o,n,_,th,e,_,m,at

Frequency of adj tokens [th,e] – 2 [c,at] – 1 [s,at] – 1 [o,n] – 1 [m,at] – 1

Vocabulary after 3rd merge [t] [h] [e] [c] [a] [s] [o] [n] [m] [at][th][the]

Corpus after 3rd merge the,_,c,at,_,s,at,_,o,n,_,the,_,m,at

65

The merges happened in this order:

• a,t => at

• t,h => th

• th,e => the

When a new piece of text arrives, the BPE tokenization will apply the merges in
the same order.

Example: [t,h,e,_,r,a,t]

• [t,h,e,_,r,at]

• [th,e,_,r,at]

• [the,_,r,at]

How BPE works

Quick Demo – Token Visualizer

66

https://observablehq.com/@simonw/gpt-tokenizer

Sidebar: If you want to see how to
code BPE from scratch …

67

Link Link

GPT Tokenizer, Byte Pair Encoding (BPE) related images, screenshots © Andrej Karpathy. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

https://www.youtube.com/watch?v=zduSFxRajkE
https://github.com/karpathy/minbpe

MIT OpenCourseWare
https://ocw.mit.edu

15.773 Hands-on Deep Learning

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

