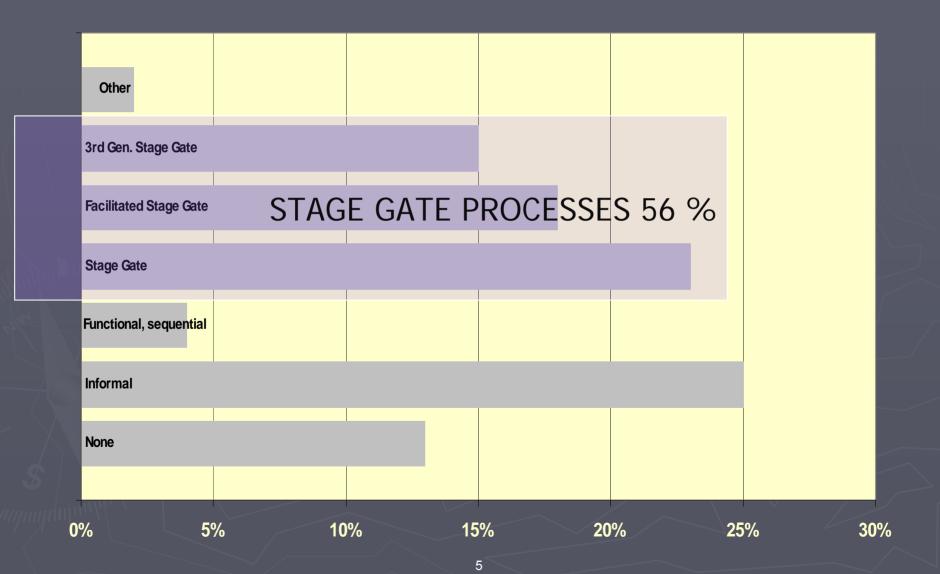

Tools & Trends in Product Development

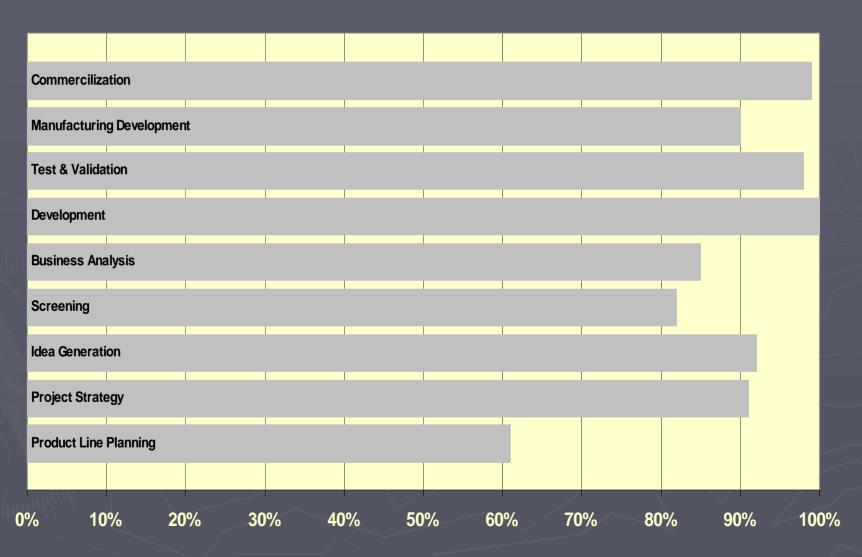
Percent of Current Sales Contributed by New Products


Self Reported Standing in Industry

Decay Curve

Design Processes

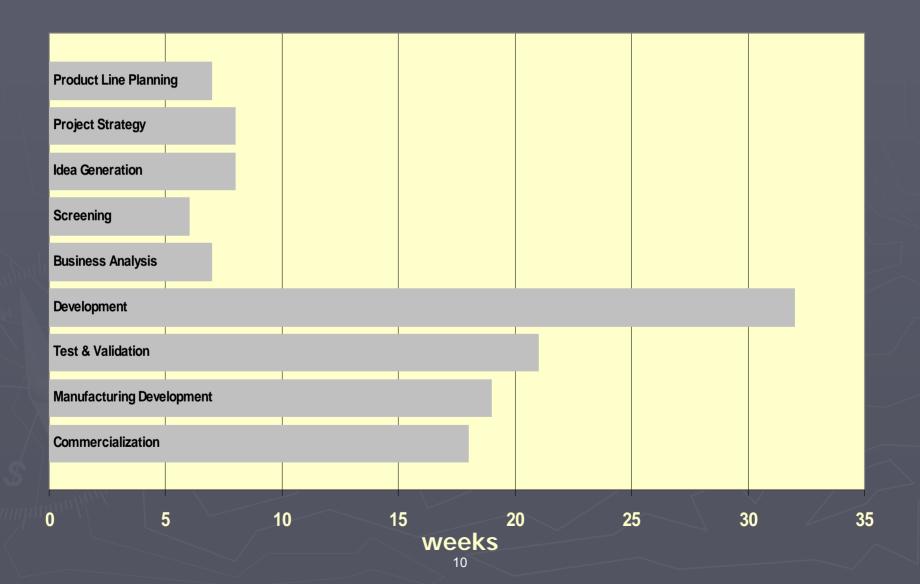
NPD Processes in Use in the US

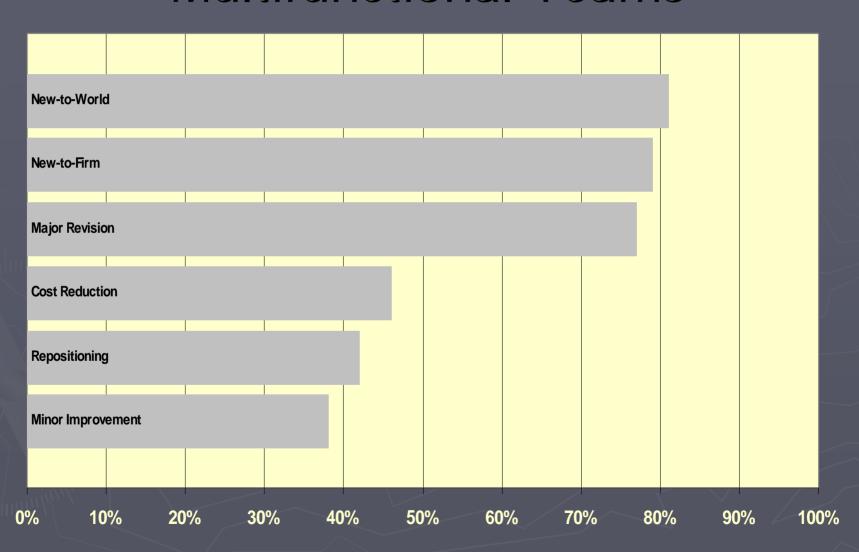

Process Tasks ...

- Product Line Planning
 - Portfolio, Competition
- Strategy Development
 - Target Market, Needs, Attractiveness
- Idea/Concept Generation
 - Opportunities and Solutions
- Idea Screening
 - Sort, Rank, Eliminate

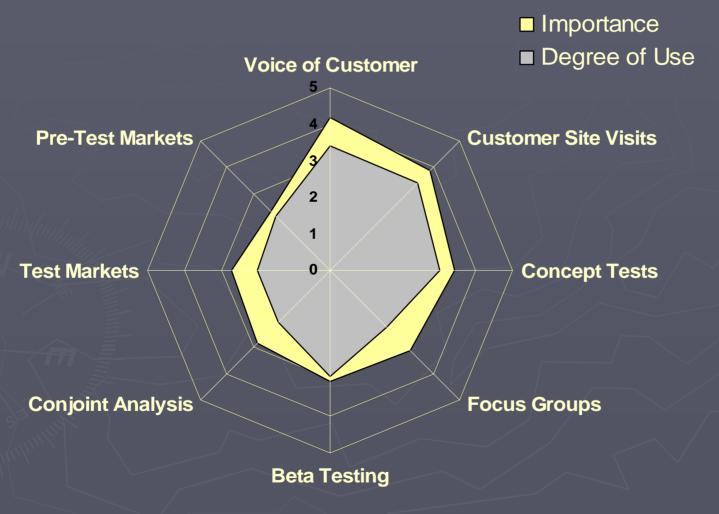
... Process Tasks

- Business Analysis
 - Business Case, Development Contract
- Development
 - Convert Concept into Working Product
- Test & Validation
 - Product Use, Market
- Manufacturing Development
 - Developing and Piloting Manufacturing Process
- Commercialization
 - Launch of Full-Scale Production and Sales

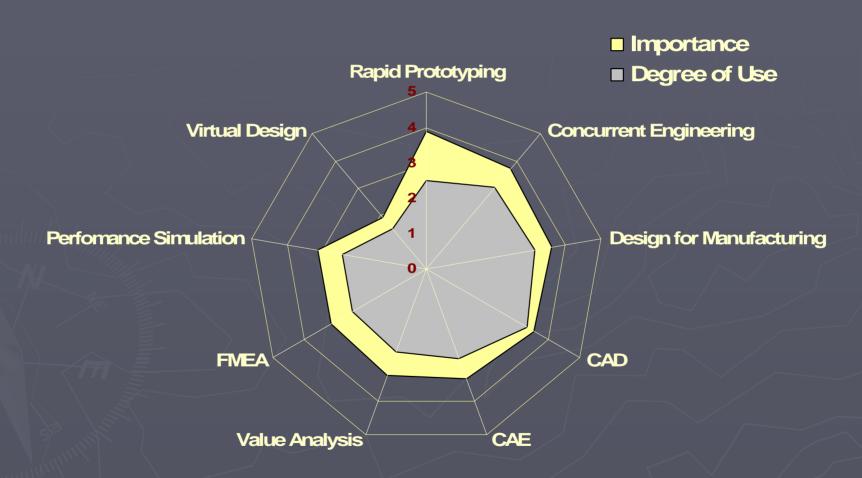

Tasks Included in Processes


Projects Completing Tasks

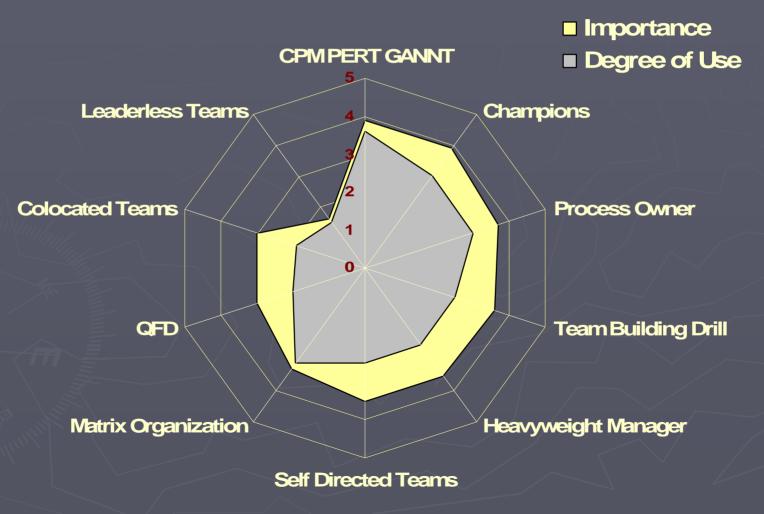
Average Time Spent on Tasks



Percentage of Projects Using Multifunctional Teams



Tools


Perceived Importance and Use of Marketing Research Tools

Perceived Importance and Use of Engineering Tools

Perceived Importance and Use of Organization Tools

Perceived Importance: Top 5

- Voice of the Customer (4.2)
- Customer Site Visits (3.9)
- Rapid Prototyping (3.9)
- Project Scheduling Tools (3.9)
- Product Champions (3.9)

Frequency of Use: Top 5

- Project Scheduling Tools (3.7)
- ► Voice of Customer (3.6)
- Customer Site Visits (3.5)
- Computer-Aided Design (3.4)
- ► Matrix Organizations (3.2)

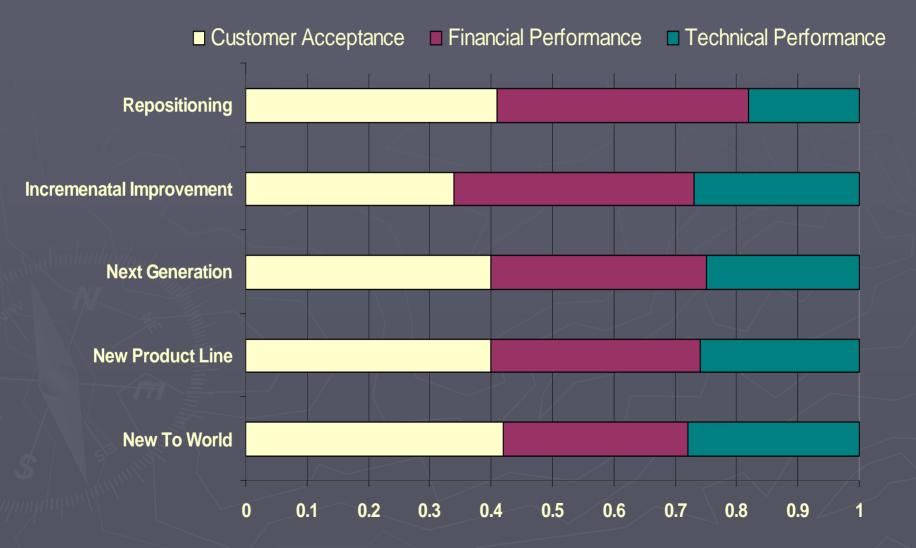
Performance

Past and Future Impact of New Products

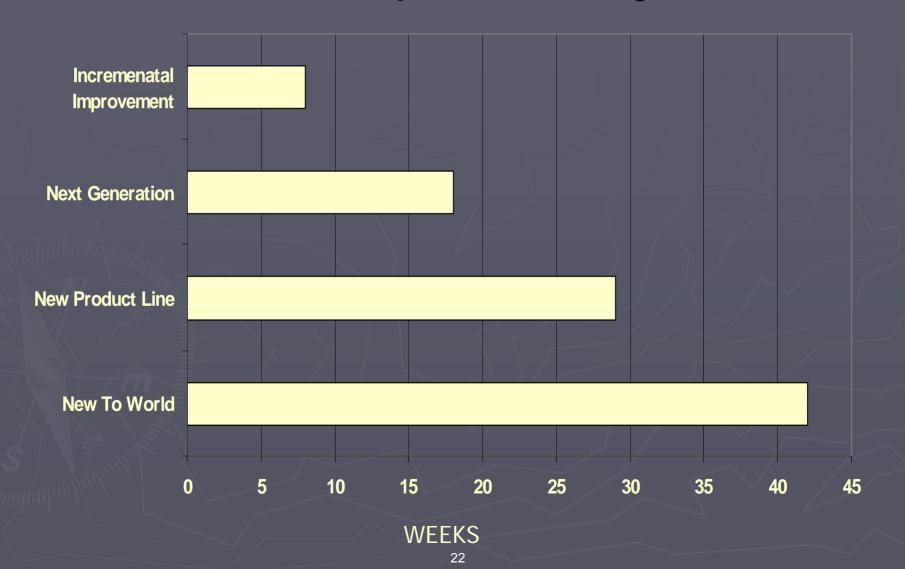
Product Success

► Successful Products (subjective)

55.9 %


Profitable

51.7 %


Still on market after 5 years

74.1 %

Performance Criteria

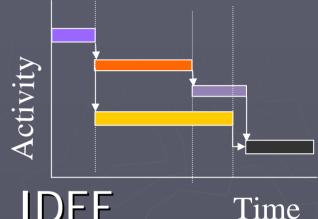
Average Length of Development Projects

Further Reading

- Rosenau et al. "The PDMA Handbook of New Product Development"
 - Data Source for preceding slides

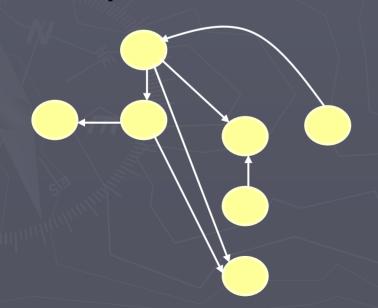
- Cooper, Robert G. "Winning at New Products"
 - Stage-Gate Processes

Tools For Innovation: The Design Structure Matrix


Thomas A. Roemer Spring 06, PD&D

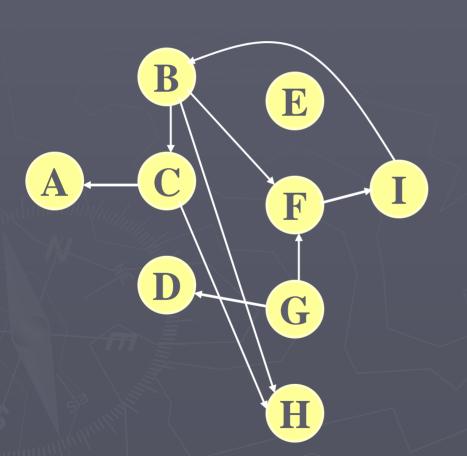
Outline

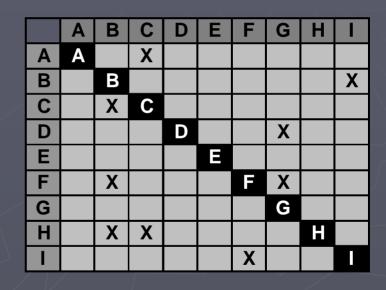
- Overview
 - Traditional Project Management Tools and Product Development
- Design Structure Matrix (DSM) Basics
 - How to create
 - Classification
- ► The Iteration Problem:
 - Increasing Development Speed
 - Sequencing, Partitioning and Simulation
- ► The Integration Problem:
 - DSM Clustering
 - Organizational Structures & Product Architectures


Classical Project Management Tools

► Gantt Charts

► Graph-based: PERT, CPM, IDEF


Characteristics


- Complex Depiction
- ► Focus on Work Flows
 - DSM focuses on Information Flows
- Ignore Iterations & Rework
 - Test results, Planned design reviews, Design mistakes, Coupled nature of the process
- Decomposition & Integration
 - Assume optimal Decomposition & Structure
 - Integration of Tasks not addressed

Design Iteration

- ▶ Iteration: The repetition of tasks due to new information.
 - Changes in input information (upstream)
 - Update of shared assumptions (concurrent)
 - Discovery of errors (downstream)
- ► Fundamental in Product development
 - Often times hidden
- Understanding Iterations requires
 - Visibility of information flows

A Graph and its DSM

Creating a DSM

- Design manuals
- Process sheets
- Structured expert interviews
 - Interview engineers and managers
 - Determine list of tasks or parameters
 - Ask about inputs, outputs, strengths of interaction, etc
 - Enter marks in matrix
 - Check with engineers and managers
- Questionnaires

Four Types of DSMs

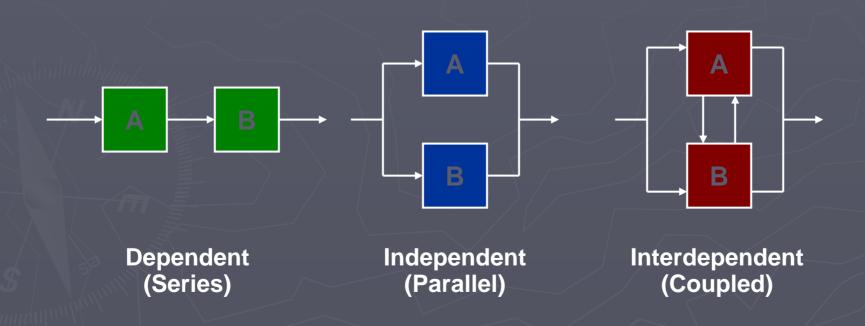
Activity based DSM
Parameter based DSM

Iteration

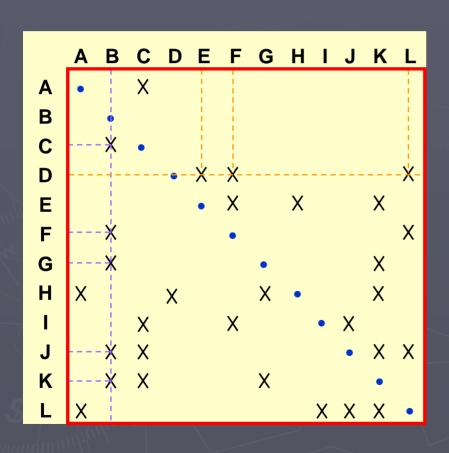
Sequencing Partitioning Simulation

Team based DSM
Product Architecture DSM

Integration


Clustering

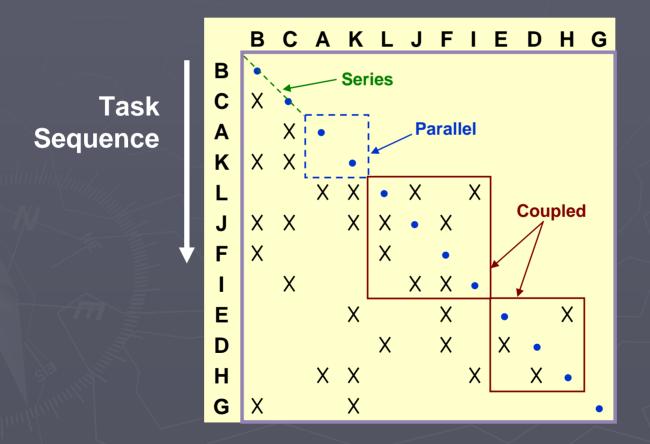
Iteration Focused Tools


Concepts, Examples, Solution Approaches

Sequencing Tasks in Projects

Possible Relationships between Tasks

DSM: Information Exchange Model


Interpretation:

- ► Rows: Required Information
 - D needs input from E, F & L.
- ▶ Columns: Provided Information
 - B transfers info to C,F,G,J & K.

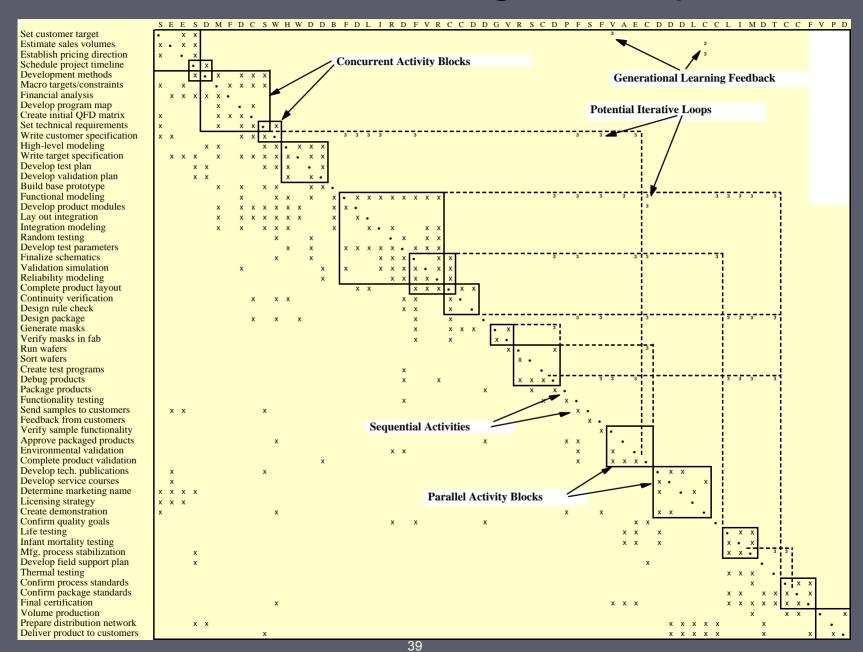
Note:

- ► Information flows are easier to capture than work flows.
- ► Inputs are easier to capture than outputs.

DSM: Partitioned or Sequenced

Sequencing Algorithm

- Step 1: Schedule tasks with empty rows first
- Step 2: Delete the row and column for that task
- Step 3: Repeat (Go to step 1)
- ▶ Step 4: Schedule tasks with empty columns last
- Step 5: Delete the row and column for that task
- Step 6: Repeat (Go to step 4)
- Step 7: All the tasks that are left unscheduled are coupled. Group them into blocks around the diagonal

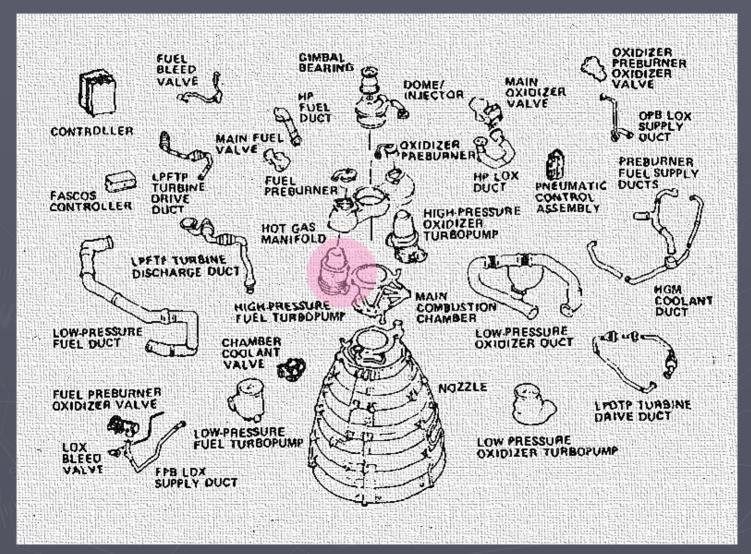

Example: Brake System Design

		1	2	3	4	5	6	7	8	9	10	11	12	13
Customer_Requirements	1	1												
Wheel Torque	2		2		X									
Pedal Mech. Advantage	3	X		3	X	X			X		X			X
System_Level_Parameters	4	X			4									
Rotor Diameter	5	X	X	X	X	5		X	X		X	X		X
ABS Modular Display	6		X				6			X				
Front_Lining_Coefof_Friction	7			X	X	X		7	X		X			X
Piston-Rear Size	8		X		X				8		X			
Caliper Compliance	9			X	X					9	X			X
Piston- Front Size	10		X		X				X		10			
Rear Lining Coef of Friction	11			X	X	X			X		X	11		X
Booster - Max. Stroke	12												12	X
Booster Reaction Ratio	13		X	X	X	X		X	X	X	X	X	X	13

Partitioned DSM: Brake Design

		1	4	2	10	8	3	11	7	13	5	12	9	6
Customer_Requirements	1	1												
System_Level_Parameters	4	X	4											
Wheel Torque	2		X	2										
Piston- Front Size	10		X	X	10	X								
Piston-Rear Size	8		X	X	X	8								
Pedal Mech. Advantage	3	X	X		X	X	3			X	X			
Rear Lining Coef of Friction	11		X		X	X	X	11		X	X			
Front_Lining_Coefof_Friction	7		X		X	X	X		7	X	X			
Booster Reaction Ratio	13		X	X	X	X	X	X	X	13	X			
Rotor Diameter	5	X	X	X	X	X	X	X	X	X	5			
Booster - Max. Stroke	12									X		12		
Caliper Compliance	9		X		X		X			X			9	
ABS Modular Display	6												X	6

Semiconductor Design Example



Task Sequencing Example

Space Shuttle Main Engine

Engine Components

Dependency Relations in Conceptual Design Block

ACTIVITIES		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
SSP Engine Balance	1	4	0.15					0.1			0.1																	
CMT Make Preliminary Material Selections	2		1	0.1			0.1		0.1	0.1			0.1															
CST Assess Pump Housing	3			8	1																							
Design Pump Housing	4		0.5	0.2	4						1			1					0.1	1			0.1					
CST Assess Turbine Housing	5					4																						1
CST Compare Design Annulus Area	6						1	1																				
CAXDetermine Optimum Turbine Staging	7	1	0.1				0.1	6	0.1		1							0.2										0.1
CSTCompare Design Pitchline Velocities	8								1																			
CST Compare Design Impeller Tip Speed	9									1	1																	
CHXDetermine Pumping Components	10	1	0.1					0.2		0.1	6	0.2																
CDE Design Pumping Elements	11		0.5								1	8	0.3		0.1													
CST Evaluate Rotor Sizing	12											1	1					1										
CDE Incorporate Bearing Dimensions	13													2		1												
CDE Design Rot or	14		0.2									1		1	2			1	0.1	1			0.2			0.1		
CBR Determine Bearing Geometry	15				0.1								1		0.2	4	1									0.1		0.1
CDEPosition Bearings and Selection	16		0.2					1			1			0.2			2											
CDE Design Turbine	17		0.2					1					0.3		0.1			4										
CDEIntegrate Rotor and Structure Layout	18				1										1				8								0.1	1
CDEIncorporate Seal Dimensions	19																			1		1						
CSL Define Seal System	20		0.2		0.1			1			1									0.3	4							
CSL Define Individual Sealing Elements	21											0.1			0.2						1	2	0.1					0.1
CDEDevelop Thrust Balance	22										0.2								1				6					
CRD Build Finite Element Model	23		0.1			0.3									1									1				
CRD Define Linear Rot ordynamic Behavior	24							1			1					1						1		1	2			
CRD Evaluate Design	25																								1	1		
CDE Analyze Weight	26																		1							0.2	4	
Design Turbine Housing	27		0.5			0.1		1						1					0.2	1			0.1					4

Block Decomposition

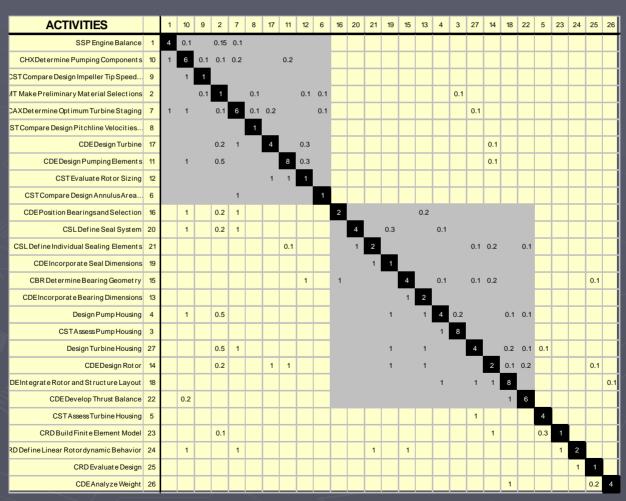
$$\min \sum_{ij \in A} a_{ij} n_{ij} y_{ij}$$

$$\sum_{m=1}^{M} x_{im} = 1, \quad \forall i$$

$$\sum_{i=1}^{N} x_{im} \le C, \quad \forall \ m$$

$$x_{im} - \sum_{h=m+1}^{M} x_{jh} - y_{ij} \le 0, \quad \forall i, j, m$$

$$x_{im}, y_{ij} \in \{0,1\}, \ \forall \ i, j, m$$


$$a_{ij}$$
 = the level of dependency of activity i on j

$$x_{im} = \begin{cases} 1 & \text{if activity } i \text{ is assigned to stage } m \\ 0 & \text{otherwise} \end{cases}$$

$$y_{ij} = \begin{cases} 0 & \text{if arc } ij \text{ is a feed back between stages} \\ 1 & \text{otherwise} \end{cases}$$

$$n_{ij} = \begin{cases} W & \text{(a large number) if } a_{ij} = 1 \\ 1 & \text{otherwise} \end{cases}$$

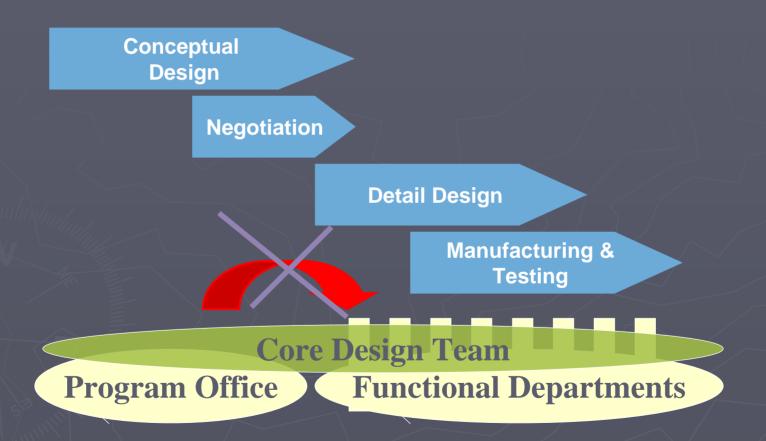
Resulting Structure for Conceptual Design Block

STC's Existing Process

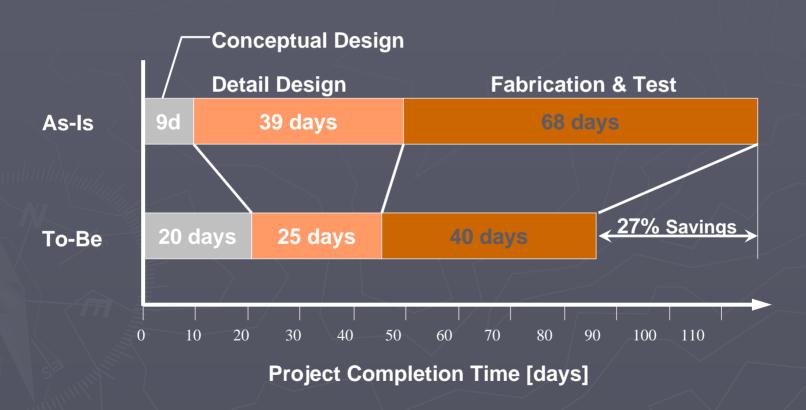
Conceptual Design

Negotiation

Detail Design


Manufacturing & Testing

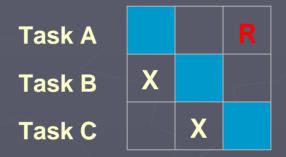
Program Office


Project Team

Functional Departments

Proposed Process

Pilot Project Performance

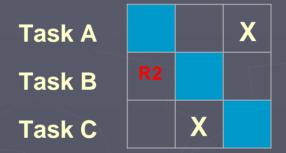


DSM Simulation

Task A X
Task B X
Task C X

- ► Task A requires input from task C
- Perform A by assuming a value for C's output
- Deliver A's output to B
- Deliver B's output to C
- ► Feed C's output back to A
 - Check initial assumption (made by A)
- Update assumption and repeat task A.

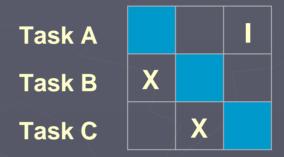
Simulating Rework



R is the probability that Task A will be repeated once task C has finished its work.

R = 0.0: There is 0 chance that A will be repeated based on results of task C.

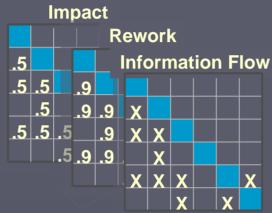
R = 1.0: There is 100% probability that A will be repeated based on results of task C.

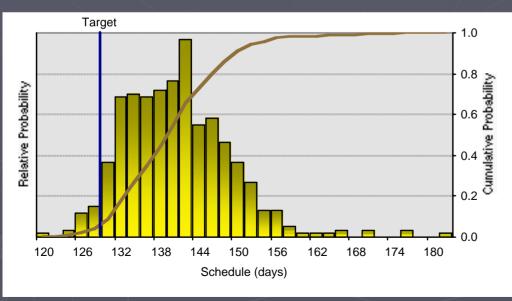

Simulating 2nd Order Rework

Second Order rework is the rework associated with forward information flows that is triggered by feedback marks.

First order rework: Output of task C causes task A to do some rework 2nd order rework: Consequently there is a chance tasks depending on A (e.g. task B) will also be repeated.

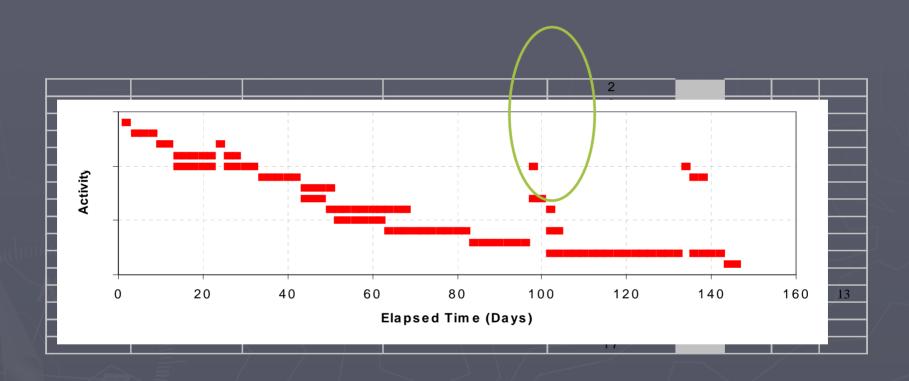
Simulating Rework Impact




I = 0.0: If task A is reworked due to task C results, then 0% of task A's initial duration will be repeated

I = 1.0: If task A is reworked due to task C results, then 100% of task A's initial duration will be repeated

Simulation Results



- DSM contains rework probabilities and impacts
- Cost and time add up
- Many runs produce a distribution of total time and cost
- Different task sequences can be tried

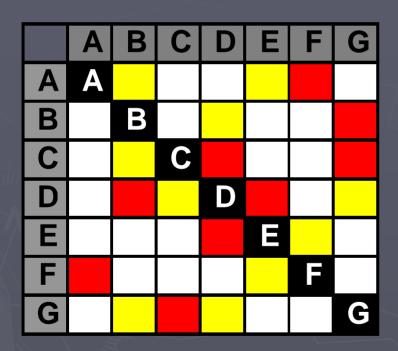
Source: "Modeling and Analyzing Complex System Development Cost, Schedule, and Performance" Tyson R. Browning PhD Thesis, MIT A&A Dept., Dec 99 52

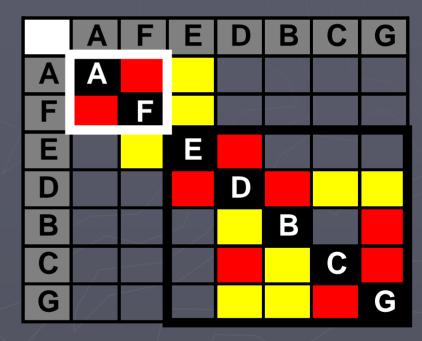
Gantt Chart with Iteration

- Typical Gantt chart shows monotone progress
- Actual project behavior includes tasks stopping, restarting, repeating and impacting other tasks

Lessons Learned: Iteration

- Development is inherently iterative
- Understanding of coupling is essential
- Iterations improve quality but consumes time
- Iteration can be accelerated through
 - Information technology (faster iterations)
 - Coordination techniques (faster iterations)
 - Decreased coupling (fewer iterations)
- Two Types of Iteration
 - Planned Iterations (getting it right the first time)
 - Unplanned iterations (fixing it when it's not right)

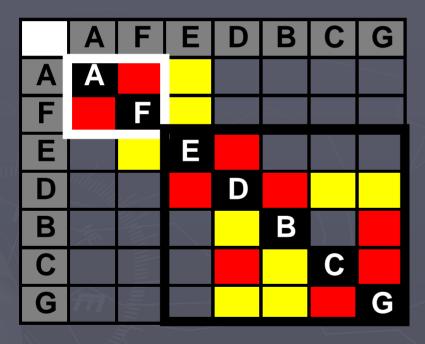

Integration Focused Tools


Concepts, Examples, Solution Approaches

Team Selection

- ▶ Team assignment is often opportunistic
 - "We just grab whoever is available."
- Not easy to tell who should be on a team
- Tradition groups people by function
- ► Info flow suggests different groupings
- Info gathered by asking people to record their interaction frequency with others

Clustering a DSM




No Dependency

Low

Hi

Alternative Arrangement Overlapped Teams

No Dependency

Low

Hi

GM's Powertrain Division

- ▶ 22 Development Teams into four System Teams
 - Short block: block, crankshaft, pistons, conn. rods, flywheel, lubrication
 - Valve train: cylinder head, camshaft and valve mechanism, water pump and cooling
 - Induction: intake manifold, accessory drive, air cleaner, throttle body, fuel system
 - Emissions & electrical: Exhaust, EGR, EVAP, electrical system, electronics, ignition

Existing PD System Teams

		Α	F	G	D	Е	ı	В	С	J	K	Р	Н	N	0	Q	L	М	R	S	Т	U	٧
Engine Block	Α	A	•	•	•	•	•	•	•	•	•		•				•	•		•		•	•
Crankshaft	F	•	F	•	•	•	•	•	•	٠			•							•	•		•
Flywheel	G	•	•	G			•	Tea	am	1												•	•
Pistons	D	•	•	•	D	•	•	•	•	•	•	•								•			•
Connecting Rods	Е	•	•		•	E	•	•		•													•
Lubrication	I	•	•	•	•	•	I	•	•	Геа	m 2		•				•			•		•	•
Cylinder Heads	В	•	•		•		•	В	•	•	•		•							•		•	•
Camshaft/Valve Train	С	•	•		•		•	•	C	•	•		Т	ean	n 3					•		•	•
Water Pump/Cooling	J	•			•		•	•	•	J	•	•	•	٠		•		•				•	•
Intake Manifold	K	•					•	•	•	•	K		•							•	•		•
Fuel System	Р									•		P	•	•	•	•		•	•			•	•
Accessory Drive	н	•	•				•	•	•	•	•	•	Н	•	•	•	•	•	•	•	•	•	•
Air Cleaner	N											•	•	N	•	•	•						
A.I.R.	0	•								•			•	•	0	•	•	•			•	•	•
Throttle Body	Q									•		•	•	•	•	Q		•	T	eam	4		•
Exhaust		•					•			•		•	•	•	•		L	•		•	•	•	•
E.G.R.		•								•		•	•		•	•	•	M		•	•	•	•
EVAP												•				•			R		•	•	
Ignition	S	•	•	•	•		•	•	•	•	•	•	•			•	•	•		S	•	•	•
E.C.M.	Т	•	•	•			•	•	•	•	•	•	•		•	•	•	•	•	•	T	•	•
Electrical System	U	•	•	•	•		•	•	•	•	•	•	•		•		•	•	•	•	•	U	•
Engine Assembly		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	V
5 2 22			_																				
						<u>Level of Dependence</u>																	
						•	High	1		•	Ave	rage			•	Low							

Proposed PD System Teams

Crankshaft	F	F	•	•	•	•	•	•	•		•										•	•	•		•
Flywheel	G	•	G			•	•	Te	am	1														•	•
Connecting Rods	E	•		E	•	•	•		•		•														•
Pistons	D	•	•	•	D	•	•	•	•	•	•	•										•			•
Lubrication	I	•	•	•	•	I		•	•		•								•		•	•		•	•
Engine Block	Α	•	•	•		•	A	•	•	•	•	Те	am	2					•	•		•		•	•
Camshaft/Valve Train	С	•			•	•	•	C	•	•	•											•		•	•
Cylinder Heads	В1	•			•	•	•	•	B1	•	•				_	ean						•		•	•
Intake Manifold	K1					•	•	•	•	K1	•				Ľ	ean	ıs					•	•		•
Water Pump/Cooling	J				•	•	•	•	•	•	J	•	•	•		•	•			•				•	•
Fuel System	Р										•	P	•	•	•	•	•	•		•	•			•	•
Air Cleaner	N											•	N	•		•	•	•	•						
Throttle Body	Q										•	•	•	Q	•	•	•	•		•	•	•	•		•
EVAP	R											•		•	R		•		1	Геаг	n 4		•	•	
Cylinder Heads	B2										•	•		•		B2	•	•	•	•	•	•		•	•
Intake Manifold	K2										•	•	•	•	•		K2	•	•	•	•	•	•		•
A.I.R.	0						•				•		•	•		•	•	О	•	•	•		•	•	•
Exhaust	L					•	•				•	•	•			•	•	•	L	•	•	•	•	•	•
E.G.R.	М						•				•	•		•		•	•	•	•	M	•	•	•	•	•
Accessory Drive	Н	•				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Н	•	•	•	•
Ignition	S	•	•		•	•	•	•	•	•	•	•		•		•	•		•	•	•	S	•	•	•
E.C.M.	Т	5	17	st		m	•	n	1.4	27	15	77	ic	ראו	•	T ₁	9	19	7•	•	•	•	Т	•	•
Electrical System	U	7.	%		•	•	•	•		3	•	•	70		• 1		·	•	•	•	•	•	•	U	•
Engine Assembly	٧	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	V
							Level of Dependence																		
							•	High	า				rage			•	Low								
								91					ago												

Lessons Learned: Integration

- Large development efforts require multiple activities to be performed in parallel.
- The many subsystems must be integrated to achieve an overall system solution.
- Mapping the information dependence reveals an underlying structure for system engineering.
- Organizations and architectures can be designed based upon this structure.

Conclusions

- The DSM supports a major need in product development:
 - documenting information that is exchanged
- It provides visually powerful means for designing, upgrading, and communicating product development activities
- ▶ It has been used in industry successfully

Additional Material

Eppinger, S.D., "Innovation at the Speed of Information," Harvard Business Review, January, 3-11, 2001. MIT OpenCourseWare https://ocw.mit.edu

15.783J / 2.739J Product Design and Development Spring 2006

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.