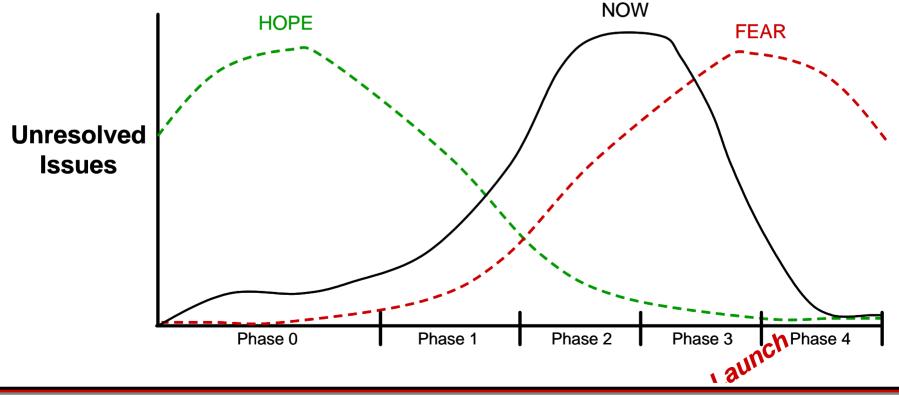


## Managing New Product Development

### Prepared by: Dan McCarthy

#### 15.875 Applications of System Dynamics

# Agenda


- Company Background
- The Problem
- The Process
- The Insights
  - Insight #1: You don't know what you don't know
  - Insight #2: If you build it, they will come...
  - Insight #3: ...but at what cost?
  - Insight #4: Parts ain't parts
- Lessons Learned (Mine)
- Future Work
- Questions

# **Company Background**

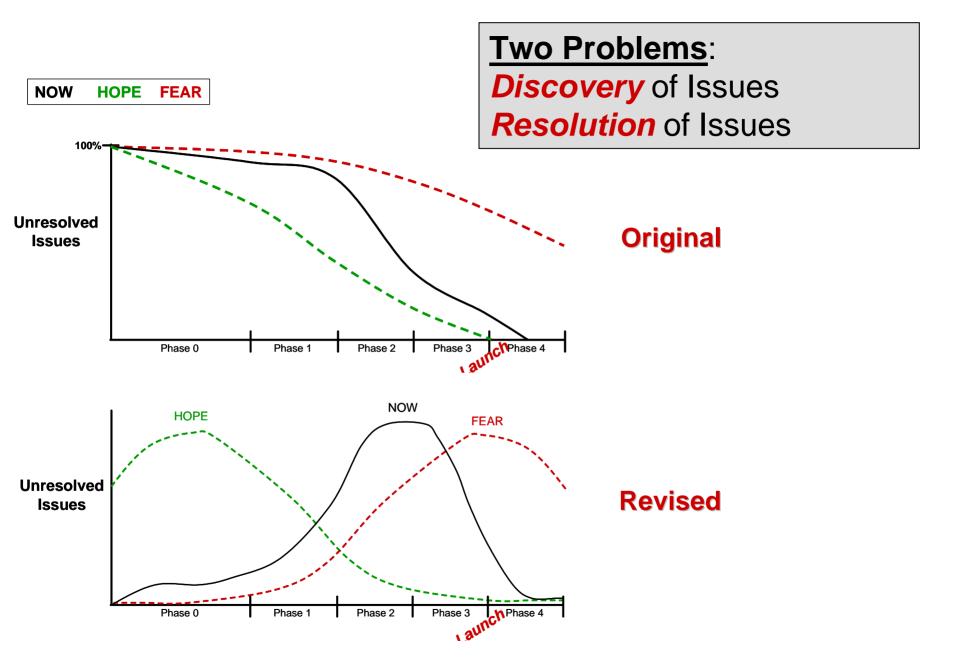
- The Early Years
- The 70's
  - Takeover & Rapid Growth
  - Foreign Competition & Poor Quality
  - Low Market Share & Near Bankruptcy
- The 80's
  - Buyout from within & 40% Reduction
  - Back to the Basics
  - TQM & JIT
- The 90's
  - Focus on Product Development
  - Concurrent Engineering
- Today
  - Growth in Overall Demand
  - Demand for Innovation

## **Problem Statement**

We have been experiencing difficulty managing our New Product Development process resulting in a large number of unresolved issues and design changes very late in the product development life-cycle. We want to develop policies that will turn this situation around.



Countdown to Launch Managing Product Design


# **The Product Development Process**



- There is a large variation in iteration / cycle time among components between builds
- Testing takes time
- Prototyping can be the long pole in the tent (key opportunity)
- Simultaneous launch of products (projects)

# Insight #1: You don't know what you don't know

- It can be hard to define the problem (symptoms of the problem) in terms that are quantifiable
  - Firefighting
  - Quality
  - Unresolved issues
- The client doesn't always know what they don't know:
  - Unresolved issues vs Unresolved AND UNDISCOVERED issues
  - Manufacturing vs DESIGN



# Insight #1: You don't know what you don't know

- It can be hard to define the problem (symptoms of the problem) in terms that are quantifiable
  - Firefighting
  - Quality
  - Unresolved issues
- The client doesn't always know what they don't know:
  - Unresolved issues vs Unresolved AND UNDISCOVERED issues
  - Manufacturing vs DESIGN

#### Implications on modeling

- Traditional Project Model (Drains a stock of work)
  - Presumes a finite and known set of tasks (issues)
  - Undiscovered Rework (not undiscovered to the modeler)
- Issues can be a complex notion
  - Fit **vs** Function
  - Component vs Integration
  - How and when they are discovered / resolved

# Insight #2: If you build it, they will come...

- Reviews: Project reviews, End of Phase Reviews, Mock-up Reviews, BUILDS
- Reviews are only as useful as:
  - The amount of *active participation* in the event
  - The amount of *realism* brought to the event
  - The amount of *perceived commitment* achieved
- Reviews are important when the **boss** shows up
- **BUILDS** require all of the above
- Builds (and subsequent testing) are when most issues are discovered
- Meaningful <u>integration</u> rarely happens outside of build events
- Conclusion: HAVE MORE BUILDS!

## Insight #3: ...but at what cost?

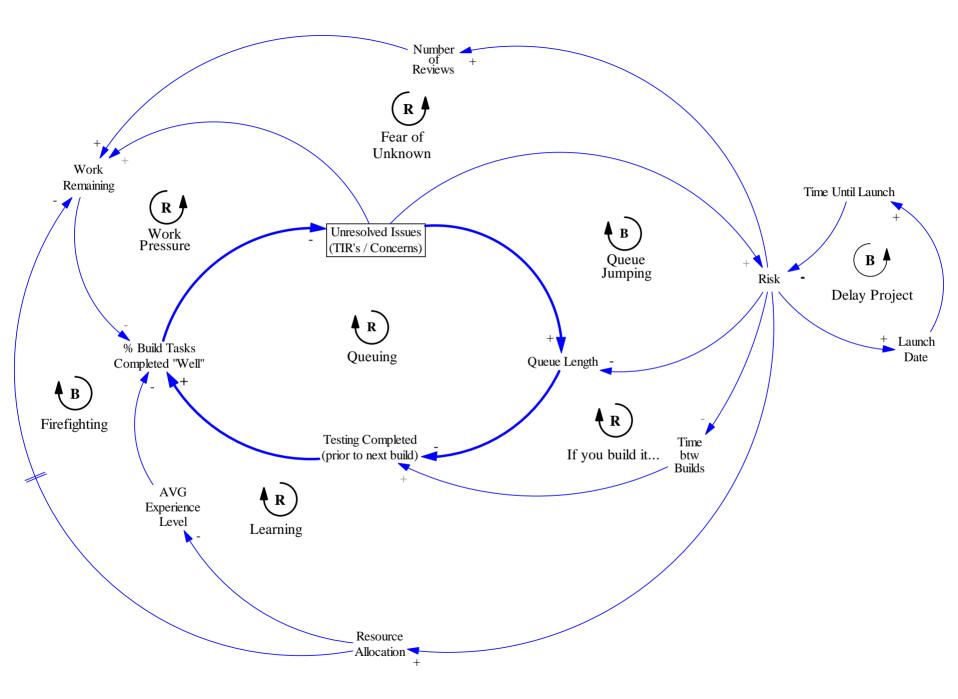
- "*More Builds*" has many implications:
  - Longer test queues → less value-added engineering
  - More parts to procure/track  $\rightarrow$  less value-added engineering
  - Higher cost
- Less time between builds involves a tradeoff:
  - Quicker iterations help to discover problems sooner
  - Less time to solve problems / less integration of designs
  - Learning leapfrogs the builds when not all components are "ready" for the build
  - Resolve issues sooner but with more overall work (cost)
- **Building more bikes** at a build has additional implications:
  - Even longer test queues
  - Longer prototype lead time
  - More parts to procure/track
  - Higher cost

### • What is the right number / time between builds?

## Insight #4: Parts ain't parts

- How do you measure the success of a project? (How do you know a project is in trouble?)
- Assessing Success (Risk) for a New Product Design project is not easy:
  - <u>During the Project</u>: Tracking Parts (# Authorized)
    - Parts ain't parts: Washer vs Fuel Tank
      - Require different amounts of effort (variability/uncertainty of effort)
      - Have different interaction effects on other parts (propagating changes)
    - Level of aggregation: part, component, sub-system, motorcycle model, platform
  - Prior to the project: Assessing Risk / Complexity
    - # new parts / # new suppliers
    - new technology (product / process)
    - # interacting components
    - volume of product(s) affected
    - # and scope of competing projects

## Insight #4: Parts ain't parts (cont)


 Level of Aggregation / Unit of analysis is important in shaping the modeling effort:

#### Do we need/want to track parts?

- To understand the dynamic behavior of the system?
- To develop a useful training tool for PM's?
- To develop a decision support tool for management?

# Lessons Learned (Mine)

- All clients are not created equal
  - Having an SD-informed client can be a double-edged sword
  - Be weary of the client who wants an "outside" opinion
- Central loop doesn't mean the simple loop when modeling



# Lessons Learned (Mine)

- All clients are not created equal
  - Having an SD-informed client can be a double-edged sword
  - Be weary of the client who wants an "outside" opinion
- Central loop doesn't mean the simple loop when modeling
- Central loop can mean a lot of learning about the problem / difficulties of modeling
- There's more than one way to skin a cat (model a problem) and trying a few (many) different ways doesn't guarantee that you'll get the fur
- Having it all done "right" is not a requirement for getting useful feedback
  - Designer to Customer (VP Rides)
  - Consultant to client
- Is SD right for this problem?

The company is convinced that the *structure* of their New Product Development process, <u>not the project managers</u>, *is responsible for the problems* they have been experiencing

## **Future Work**

- Expanded Model of Single Project
- Flight Simulator based on the Single Project Model
  - Training tool for Project Managers
- Multi-Project Model
  - Decision Support Tool (DST) for HD management
- Flight Simulator based on the Multi-Project Model
  - Training tool for Project Managers and HD Management
- Dan's dissertation

### Questions