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ROSS COLLINS: Welcome to the tutorial on the method of simulated moments. Collaborating

together on this tutorial is Armin Ashoury, Ross Collins, and Ali Kamil. We will

present the tutorial in two parts. The first part, presented by me, Ross Collins, is an

overview of the MSM, why it's useful, and how it works. The second part, presented

by Armin Ashoury, will go through the details of how to implement the MSM in

Vensim DSS.

Background information on the MSM is included in the associated book chapter with

this video. The chapter goes into much more mathematical detail in the MSM

formulation, which the interested viewer should consult if looking for more

information.

In this video, we do not dissect every individual formula, but instead try to give a

useful overview of the MSM, and then apply it to a simple example. The step-by-

step replication the tutorial will likely require reading and understanding the book

chapter in more detail. Still, this video should give a flavor of why MSM is useful,

how it works in the general level, and what sort of time and effort is required to

implement it in system dynamics models.

So what does the MSM let you do? Well, according to this quote, it allows one to

"compare time series data against the same variables in a model, and minimize the

weighted sum of a function of the error term by changing the uncertain parameters

until best fitting estimates are found through optimization,"

This is important for model validation. So specifically what MSM does is it compares

the moments of real data against the moments of simulated data or just the model

output from a simulation. So moments are things like mean, variance, skewness.
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Kurtosis is another one. These are the first, second, third, and fourth moments

respectively.

An important thing to realize is that unknown parameters in a model will alter the

simulated moments. So if you have some unknown parameters, x, and some

moment, y, if you change x, then y will change.

So what the optimization method does-- referred to in the quote up at the top-- is it

will find values for our unknown parameters that minimize the weighted difference--

and I'll get to why weighted is important later-- the weighted difference between real

and simulated moments. And these weighted differences are called the error terms.

So we're going to apply this MSM to a simple obesity model. We basically have

weight data in Excel-- this Excel file is included with this video-- we have weight data

for a population of 1,000 individuals at five different points in time, specifically years

1, 5, 10, 15, and 20. The moment conditions we use are mean and standard

deviation. And given that we have five years of data and two moments, we have 10

moments in total.

So the unknown parameters that we're trying to estimate through the MSM

technique are called Overfeeding, Starvation, and Energy Intake Extra Trend. So I

am going to show this model really quick. It's a very simple model that tracks the

weight gain of 1,000 individuals. You can see you have the stock structure here, an

array of 1,000 people, so we're utilizing subscripts to denote these 1,000

individuals.

And the major feedback is that as weight change accrues, you have some energy

intake balance that changes. This feeds back into one's energy intake through the

starvation and overfeed parameters and then alters the weight change.

So the three uncertain parameters are here. We have an underlying trend in energy

intake that impacts the weight trajectory of each individual. And then we have the

starvation and overfeed parameters that impact this major feedback. If energy

intake balance is on the heavier side, starvation kicks in with some parameter of
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force. From the lower side, the overfeed parameter kicks in with some amount of

force.

So let's see. If we click on the weight here and show a graph, we're only going to

get to show 16 of the individuals, but you can see the trajectory of them through

time-- over the 20 years. The initial conditions are captured here.

The mean of individuals is 80 kilograms-- so you can see it sort of circled around

there-- and the standard deviation is 5 kilograms, which is why the initial conditions

differ. But you can see the trajectories, and we have this for 1,000 individuals. So

then the idea of the MSM is you have these 1,000 trajectories, and you have the

moments that define these trajectories. And we compare that against the real data

that we have in the exercise.

So let's see. Final slide that I'm going to talk about before I hand it off to Armin to go

into the Vensim implementation. So basically, there are four overarching steps and

four Vensim models associated to each step. So in the first step, we are basically

making the first cut at estimating these three unknown parameters.

And to do that, we need-- and I'm going to pull up the book chapter here-- we need

to minimize the weighted differences of these parameters. And that's what you can

see here in equation three in the book chapter. This theta hat is the set of

parameters-- in our case just three-- and we want to minimize the difference

between simulated moments and the real moments to use for data.

And we have here in the middle this W, which is a weighting matrix. And the

purpose of the weighting matrix is to give less weight to really noisy and uncertain

moments, since those are going to sort of hijacked the optimization process when

trying to choose parameters.

So the first W that we use in the first step is essentially just taking the real data

moments and squaring them and then taking the reciprocal. And those are along

the diagonal elements of W. Armin will go into more detail about that, but that's our

initial starting point for W.
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So the output of that are an initial set of parameter estimates, not necessarily

optimized, but certainly informed by this initial weighting matrix. The second step is

to calculate essentially a more efficiently weighted W, or what we call W*, and it

uses an algorithm that is discussed in the chapter. It's equation four down here.

As you can see, it's reasonably complicated and requires first calculating the

variance-covariance matrix of the simulated moments, which again we can do in

Vensim-- even though it's easier in MATLAB-- and W* is simply the inverse of this

matrix.

So once we've got W*, we basically go into the second step, which is very similar to

the first step. It's an optimization yet again, but now we have a more efficiently

weighted W. And that gives us a better set of optimized parameters.

The important thing to note is that we can iterate if we are not happy with W, but the

final step involves calculating competence intervals for each of our uncertain

parameters. Again, in our case, we have three of them. So these confidence

intervals are just like other confidence intervals and statistical exercises. We want

those bounds to be as tight as possible, and we don't want them to include zero.

So that is the overview of the MSM. I'm going to hand it off now to Armin, who is

going to go through the major steps actually implemented in Vensim. So thank you

for listening.

ARMIN ASHOURY: In each model, we have a part that captured the moments we need for the MSM

process. So here, for example, in the FirstStep model, we see that we have the

main model of obesity. And here we have the part that tries to capture the different

moments that we have. For example, here we want to catch the mean of body

weights and also similar deviation of body weights.

Simply, this part tries to create a matrix of moments. For each column, we have one

simulation. So here, for example, we have like 10 simulations. And for each row, we

have one of our moments here. Since we have like five years of data, which are

year 1, 5, 10, 15, and 20, we have to use two moments, which are mean and
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standard deviation.

We have like 10 rows that, for the first five years, we have first five rows, we have

the mean of our years. And for the second five rows, we have a standard deviation

of our years. So we can create this matrix in whatever way you want, but here we

try to capture these moments and create that matrix using second flow system.

In the FirstStep of moment, we tried to find three unknown parameters of obesity

model, which are extra trends, starvation, overfeed. We use formula five in the book

chapter and try to optimize those parameters based on that formula.

So here in formula five, you see like different parameters we have. For example, M

of s is the average simulated vector of moments. So for example, in our example,

we have like 10 simulation for each one of those moments, so we average the

moments over those simulation and create a vector, which is M of s here.

And M of d is the real moments values in that vector that we capture from the real

data we have. W here is the initial value for the weights. For the initial value, we use

the Formula One over moments, real moments, to power of two. In the model, we

call the function-- a function here as the error term.

So here in the view 2 of our FirstStep model, we can see that we have our three

unknown parameters here. We put them all together in one vector here called

parameter so that we can deal with them easily. So from the obesity model, we get

the moments that we need here.

So if you take a look at the moments here-- the moments we have here-- in the last

year-- year 20-- you'll see that we have matrices that has 10 moments in it, and for

each moments we have like 10 simulations. So we have 10 in 10 matrix for each

moments in each simulation. So we get those values.

And here we can get an average over those 10 simulations, and we create the M of

s that we talked about here. So using that and using the real data that we have we

calculate the difference between the moment-- the selected moments and the real

moments.
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And here, we see that we calculate the W based on the formula we have for the

initial value, which is one over real moments to the power of 2. And using these

data, we calculate the error terms here, which we just calculated for the last time of

the simulation, which is the year 20.

So as you can see here, this formula here is a formula 5 from the chapter books

that we have. And finally, we have to do some optimization on the model to get the

value. So here, you'll see that we want to optimize over the error terms, and we

want to minimize it. So we put error term here on base minus one. You have to do

to choose a policy for this optimization.

So we are what we want to optimize over the parameters, so we have to choose the

parameters as the variable we want to optimize. And then we do the optimization

and you will get the values we need. So we do optimization, and it may take for

awhile, maybe like 20 or 30 minutes.

So we are fast forwarding to the values we have at the end of that. So as you can

see here, we have optimized parameters-- optimized values for our parameters,

which are kind of close to the real values that we have. So in the next model, which

is the CalcW model, we try to calculate the weight we need for the MSM process

using other models.

So here we import optimized, unknown parameters from the previous model, which

is the FirstStep model, to CalcW model. Then we calculate a variable called S using

the formula for in the book chapter that you can see it over here. And the inverse of

that S variable is the weight that we need for our MSM process.

In the first view of CalcW, although everything is the same as this previous model, in

the second view, we try to calculate the S based on the formula we have in the book

chapter. So here we can see that we try to calculate the average of simulated

moments. And this is exactly the same as the previous model, and we try to

calculate the average of each moment over 10 simulations.

And after that, you can see that that average of simulated moments here in the
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formula 4. And we have to subtract the real value of moments from that average

and then multiply to its transpose and get another average over that. So here in the

moments differences variable, we try to calculate the formula we have in the book

chapter formula 4. And using that, we just calculated the S hat for the last final time

of simulation.

We only need to calculate the value of S just for one time, so that by inversing the

value of the matrix S, we can get the value of matrix W that we need the MSM

process. So we just want the models for one time. And here, after the simulation

ends, you can see the value of S hat we need in the final time of simulation here.

So we have like 10 by 10 matrix that has like difference moments, and we have to

inverse this matrix to get the real weight matrix that we need. In the next model,

which is the SecondStep model, we again want to find all known parameters that we

have using some optimization this time using the calculated w from the previous

part in the CalcW part.

So we imported S matrix from the previous part. And by inversing that S matrix, we

get the W that we need. And also, we can import optimized parameters from the

FirstStep model, or we can just use some random other variables, values as the

initial values of the parameters.

And so finally, we do another optimization to find our three unknown parameters.

And we again use the formula (5). Just this time, we have the W calculated from the

previous model, which was the CalcW model. So here in the SecondStep model, in

view one, you can see everything's the same as the two previous models.

And in view two, you can see the only [? serious ?] thing, that difference from the

FirstStep model, is that we import the value of S and then inverse it to calculate the

W instead of calculating W based on the data moments that we have. Here we have

some kind of [? bargain ?] Vensim.

And if you try to import the values of S hat from previous model using some kind of

function, like GET VDF CONSTANT or any other function that tries to import the
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values from the previous model, then my Vensim cannot calculate the inverse of

that metrics [INAUDIBLE].

So here we just copy-pasted the values of the calculated S matrix from previous

model and just put it here as the exogenous variable, and here we calculate the

inverse of my matrix, instead of just using the imported values from the previous

model. For the SecondStep model, again, we have to optimize the parameter.

So again, we have like the same system as the FirstStep model. We tried to

minimize the errors terms, and we are trying to optimize the parameters. And after

like the simulation-- simulation may take like an hour or so-- so after the simulation

ends, we have optimized value for our unknown parameters.

After the optimization is finished, we can see the optimized parameters value here.

So we get these values for each one of these parameters. And we can see, for

example, 0.002 is for [INAUDIBLE] random, 0.35 is for starvation, and 0.13 is for an

overfeed parameters here,

The next model, which is the Confidence Interval Model, we try to calculate the

confidence interval of our unknown parameters. So here we need to import the

optimized parameters from the SecondStep model and the W from the CalcW

model. And then we calculate the confidence intervals first by calculating a variable

called Q. We can see the formula for calculating the Q here.

And then using that Q, we calculate the confidence interval using this formula we

can see here. We just have to add and increase our values from each parameter.

So here the confidence level factor, for example for 95%, the confidence interval--

assuming we have normal distribution-- is 1.96. Then we have to multiply that value,

that confidence level factor to a square root of q, and adding and subtracting from

the parameters. So after that, we have the confidence interval for each one of our

parameters.

So here in the Confidence Interval Model, we can see that again we calculate the

average simulated moment, and we get the S from the previous part. Also, we have
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two import the value of parameters meters from the previous model, which was the

SecondStep model. So we get the optimized parameters here. We get the value of

S here. And here we try to calculate the confidence interval using the formula that

we have.

So here in the formula 7, you can see that we have 1 plus 1/K. K here is number of

simulation. So for example, we have 10 simulation. Then we have delta as minus 1,

which is the W. And again, delta-- delta here is the change in moments of a

parameter by changing the parameter for epsilon or [? theta ?] [INAUDIBLE] value.

So for example, if you add 0.001 to an optimized value of "Starvation", how much

it's average simulated mean may change or standard deviation may change to two

moments that we have. So we tried to calculate that delta here using some

[INAUDIBLE] variable. In [INAUDIBLE] variable, we just add and decrease a value of

epsilon to each parameters, and then we get the delta here. Using this system that

you can see here, we calculate the confidence interval we need.

So again, we need to run the model only for one time. Just by running the model

just for one time, we can calculate the confidence interval that we need. So after

running the model, we can see this we have the confidence intervals for, for

example, upper bound confidence interval for each one of the parameters here, and

the lower bound of confidence interval for each one of the parameters that we have

in here.

The base obesity model and the moments, the capturing moments structure that we

have in all four models, are kind of the same, except for the last model, which is the

confidence interval model. We have to add one other set of scripts that is for

sensitivity analysis. For each one of the parameters, we have one upper bound and

one lower bound, so we have to add six subscripts to the model.

And for each one of the subscript, we have to run a simulation to, for example,

catch the upper bound of one of the parameters or catch the lower bound of the

parameters. So you have to change the model in a way that it runs the simulation

for each one of those subscription. But everything else is the same in our four
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models for the base of the obesity model and the moment capturing model for a

structure.

Finally, if we put aside the [INAUDIBLE] in Vensim and assume that we can just

import and export [INAUDIBLE] between models and calculate the inverse of matrix

without any problem, we can create just one common script that runs our sequential

models and just import and export the data between them. And after running all the

models and processes, and it just gives us the final solution of the optimized

parameters and their confidence intervals.

So here for example, we created a common script that tells Vensim to optimize the

first model, then import the value from the first model and calculate the W while

you're running the second model. And after that, just import the W from the CalcW

model and just do another optimization to get the second to do another optimization

on SecondStep model.

Finally, export the values to the confidence values of unknown parameters to the

confidence interval, and just calculate the confidence interval. So using such as

system, using such a common script system, we can just do one-- just gives Vensim

one common, and it will just do the whole process of our series models one after

each other, and do the whole thing together. And just gives us the final parameter's

value and their confidence interval. So that was it. Thank you so much for watching.
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