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Welcome to this Vensim tutorial. As a group of students engaged in the system
dynamics seminar at MIT Sloan, we will present how to estimate model parameters
and the confidence interval in a dynamic model using Maximum Likelihood

Estimation, MLE, Likelihood Ratio, LR method.

First, the basics of MLE are described, as well as the advantages and underlying
assumptions. Next, the different methods available for finding confidence intervals
of the estimated parameters are discussed. Then, a step-by-step guide to a
parameter estimation using MLE-- an assessment of the uncertainty around
parameter estimates using Univariant Likelihood Ratio Method in Vensim-- is

provided.

This video is presented to you by William, George, Sergey, and Jim under the
guidance of Professor Hazhir Rahmandad. The literature, Struben, Sterman, and
Keith, highlight that estimating model parameters and the uncertainty of these
parameters are central to good dynamic modeling practice. Models must be

grounded in data if modelers are to provide reliable advice to policymakers.

Ideally, one should estimate model parameters using data that are independent of
the model behavior. Often, however, such direct estimation from independent data
is not possible. In practice, modelers must frequently estimate at least some model
parameters using historical data itself, finding the set of parameters that minimize

the difference between the historical and simulated time series.

Only then can estimations of model parameters and uncertainties of these
estimations serve to test model hypotheses and quantify important uncertainties,

which are crucial for decision-making based on modeling outcome. Therefore, when



modeling a system in Vensim, if the purpose of this model involves numerical testing

or projection, robust statistical parameter estimation is necessary.

Confidence intervals also serve as an important tool for decision-making based on
modeling outcomes. Various approaches are available to estimate parameters in
confidence intervals in dynamic model, including, for estimation, the generalized
methods of moments in maximum likelihood, and for confidence intervals,

likelihood-based methods and bootstrapping.

Maximum Likelihood Estimation is becoming increasingly important for nonlinear
models when estimating nonlinear parameters that consist of non-normal,
autocorrelated errors, and heteroscedasticity. It is simpler to understand the

construct, yet at the same time, requires relatively little computational power.

MLE is best suitable for using historical data to generate parameter estimation and
confidence intervals as long as errors of estimation are independent and identically
distributed. When using MLE in complex systems where these assumptions are
violated, and/or the analytical likelihood function might be difficult to find, one should

use more advanced methods. This tutorial will not address these cases.

As the demonstration will show, the average laptop in use in 2014 is capable of
running the analysis in a few minutes or less. This tutorial is based on the following
four references-- "Bootstrapping for confidence interval estimation and hypothesis
testing for parameters of system dynamics models" by Dogan, "A behavioral
approach to feedback loop dominance analysis" by Ford, "Modeling Managerial
Behavior," also known as "The Beer Game" by Sterman, and a soon-to-be
published text by Struben, Sterman, and Keith, "Parameter and Confidence Interval

Estimation in Dynamic Models-- Maximum Likelihood and Bootstrapping Methods."

More background and explanation on the theory of MLE can be found in these
works. This tutorial will focus on the application of MLE in Vensim. The literature,
Struben, Sterman, and Keith, stresses that modelers must not only estimate
parameter values, but also the uncertainty in the estimates so they and others can

determine how much confidence to place in the estimates and select appropriate



ranges for sensitivity analysis in order to assess the robustness of the conclusions.

Estimating confidence intervals can be thought of as finding the shape of the
inverted bowl, Figure 2. If for a given data set, the likelihood function for a set of
parameters falls off very steeply for even small departures from the best estimate,
then one can have confidence that the true parameters are close to the estimated
value. As always, assuming the model is correctly specified, another maintained

hypothesis are satisfied.

If the likelihood falls off only slowly, other values of the parameters are nearly as
likely as the best estimates and one cannot have much confidence in the estimated
values. MLE methods provides two major approaches to constructing confidence
intervals or confidence regions. The first is the asymptotic method, AM, which
assumes that the likelihood function can be approximated by a parabola around the

estimated parameter. An assumption that is valid for a very large sample.

The second is the likelihood ratio, LR method. The LR is the ratio of the likelihood
for a given set of parameter values to the likelihood for the MLE values. The LR
method involves searching the actual likelihood surface to find values of the
likelihood function that yield a particular value for the LR. That value is derived for
the probability distribution of the LR and the confidence level desired, such as 95%

chance that the true parameter value lies within the confidence interval.

This tutorial will use the Univariate Likelihood Ratio for determining the MLE
competence interval in Vensim. The estimated parameter and competence interval
mean that for a specific percentage of probability-- usually 95 or 99% that the real
parameter falls within the confidence interval with the designated percent possibility.

This is consistent with general applications of statistics and probability.

The LR our method of confidence interval estimation compared to the likelihood for
the estimated parameter, theta hat, with that of an alternative set, theta star. The
likelihood ratio is determined in equation one as R equals L theta hat divided by L
theta star. Asymptotically, the likelihood ratio falls at chi square distribution, equation

two.



SPEAKER 2:

This is valuable, because the univariate method requires no new optimizations once
the MLE has been found. The critical parameter value for all parameters is then
simply using equation three. A disadvantage of univariate confidence interval
estimates, however, is that the parameter space is not fully explored. Hence, the

effect of interaction between the parameters on LL is ignored,

The tutorial now switches to a real simulation using Vensim 6.1. It will show how the
theory just described can be applied to estimating parameters of decision-making in

the Beer Distribution Game.

Hello. This tutorial is now going to explore analytics, by estimating the parameters
for a well-analyzed model of decision-making used in the Beer Distribution Game.
The model is described in the paper, "Modeling Managerial Behavior--
Misperception of Feedback in a Dynamic Decision-Making Experiment" by Professor

Sterman from 1989.

Participants in the beer game choose how much beer to order each period in a
simulated supply chain. The challenge is to estimate the parameters of a proposed
decision rule for participant orders. The screen shows the simple model of beer
game decision-making. The ordering decision rule proposed by Professor Sterman
is the following. The orders placed every week are given by the maximum of zero
and the sum of expected customer orders-- the orders that participants expect to

receive next period from their immediate customer and inventory discrepancy.

The inventory discrepancy is the difference between total desired inventory and
some of actual on-hand inventory and supply line of on-order inventory. There are
four parameters that are used in the model-- [INAUDIBLE], the weight on incoming
orders in demand forecasting, S prime, the desired on-hand and on-order inventory,
the fraction of the gap between desired and actual on-hand and on-order inventory

ordered each week, and the fraction of the supply line the subject accounts for.

As modelers, we don't know what the parameters of the actual game are. But we

have the data for actual orders placed by participants. And this data is read from the
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Excel spreadsheet into the variable, actual orders. Let's start from some
guesstimates and assign the following values. [INAUDIBLE], fraction of discrepancy
between desired and actual inventory, and supply line fraction are all equal to 0.5. S

prime, the total desired inventory, is 20 cases of beer.

With these parameters, the model runs and generates some alias of the order
placed, which can be seem on this graph. Let's compare them against the actual
orders observed in the beer game. We can see that although the trend is generally

correct at the high level, the shape is totally different.

This necessitates the question, how can we effectively measure the fit of the data?
The typical way is to calculate the sum of squared errors, which are differences
between simulated and actual data points. Square, to make sure negative values
don't reduce the total sum. The basic statistics of any variable can be found by

using statistics to from either object output or bench tool.

For this tutorial, | have already defined it. And in this case, we can see [INAUDIBLE]
of sum of squares of residuals is 1700, with a mean of about 35. This is pretty far
from a good fit, and we can confirm it officially. Now let's see how to run the
optimization to find the parameters that will bring the values of orders placed as

close to the actual orders as possible.

The optimization control panel is invoked by using optimized tool on the toolbar.
When you first open, you have to specify the file name here. Also, it is necessary to
specify what type of optimization you're going to do. There are two types that can
be used. They differ in the way they interpret and calculate the payoff value. A
payoff is a single number that summarize the simulation. In the case of the
simulation, it will be a measure of fit, which can be a sum of squared errors between

the actual and the simulated values, or it can be a true electrical function.

If you are only interested in finding the best fit without worrying about confidence
intervals, you can use the calibration mode. For calibration, it is not necessary to
define the payoff functional mode. Instead, choose the model variable and the data

variable with which the model variable will be compared.



In Vensim, then at each time step, the difference between the data and the model
variable is multiplied by the weight specified. And this product is then squared. This
number, which is always positive, is then subtracted from the payoff, so that the
payoff is always negative. Maximizing the payoff means getting it to be as close to
zero as possible. However, this is not a true log-likelihood function, so the results
cannot be used to find the confidence intervals, which we need. Therefore, we're

going to use the policy mode.

For policy mode, the payoff function must be specified explicitly. At each time step,
the value of the variable or presenting a payoff function is multiplied by the weight.
Then it is multiplied by time step and added to the payoff. The optimizer is designed
to maximize the payoff. So variables, for which more is better, should be given
positive weights, and those, for which less is better, should be given negative

weights.

Here, [INAUDIBLE] are specified in the sum of squared errors. Residuals are
calculated as the difference between orders placed and actual orders at each time
step. This squared value is then accumulated in the stock sum of residual square.
The tricky part is the variable, total sum of residual square. Please note that
because Vensim, in the policy mode, multiplies the values of the payoff function by
the time step, the payoff value is the weighted combination of the different payoff

elements integrated over the simulation.

This is not what we're looking for. We are interested in the final value of a variable
instead of the integrated value, because the final value is exactly the total sum of
squared errors the way we defined it. Here's an example to illustrate the concept. In
this line is a stock variable level. It can be seen that, if we just use the stock of sum
of residual squared in the payoff function, we get the value, which is equal to the

area under the curve, instead of the final value that we need.

[INAUDIBLE] look at only the final value. In a model, it is necessary to introduce new
variable for the payoff function and use the following equation that makes its value

to be zero at each time step, except for the final step. Add the current value of the
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residual squared to the stock level to account for the value of the current time step.

This effectually ignores all the intermediate values and looks only at the final value.
So far, this is nothing different from what Vensim was doing in the calibration mode.
We simply replicated what it would be doing automatically. In order to get the true
likelihood function-- assuming normal distribution of errors-- we need to divide the

sum of squared errors by two variances.

This is what you can see in the true low likelihood function variable. So far, in this
demonstration, we don't know what the standard deviation of errors is going to be,
because we haven't optimized anything yet, so we're going to leave this variable as
1. We are going to change it to the actual value of the standard deviation of errors

later by the confidence interval.

Now let's change the run name and go back to Optimization Setup. And let's use
our log-likelihood function as the payoff element. Because this is policy mode, we
don't need to specify anything in Compare To field. For the weight, because this is
policy mode, it is necessary to assign a negative value. This tells Vensim that we're
looking to minimize the payoff function. If there are multiple payoff functions, the

weight value would have been important.

For one function, it doesn't matter. But we don't want to change the values of the
log-likelihood function to calculate true confidence internal values. Therefore, the
log-likelihood function will not be scaled, and the weight is going to be minus 1. Next
screen, the Optimization Control Panel, we have to specify the file name again.
Then, make sure to use multiple starts. This means the analysis is less likely going

to be stuck at a local optimum if the surface is not complete.

If multiple starts is random, starting points for any optimizations are picked randomly
and uniformly over the range of each parameter. Next field, optimizer, tells Vensim
to use probable method to find local minimum function at each start. Technically,
you could ignore this parameter and just rely on random starts to find the values of
a payoff function. However, using multiple starts together with optimization of each

time step produces better and faster convergence.



The other values are left at the default levels. You can read more about these
parameter in Vensim help, but generally, they control the optimization and are
important for complicated models where simulation time is significant. Let's add now

the parameters that Vensim will vary in order to minimize the payoff function.

Next, make sure Payoff Report is selected and hit Finish. For random or other
random values of multiple start, the optimizer will never stop unless you click on the
Stop button to interrupt it. If you don't choose multiple starts, the next few steps are
not necessary as Vensim would be able to complete optimization and sensitivity
analysis, which is performed in the final step of optimization. However, as |
mentioned, the optimization can be stuck at a local optimum, thus producing some

optimal results.

So it is recommended that you use multiple starts unless you know the shape of the
payoff function and are sure that local optimum is equal to the global optimum. So
having chosen random multiple starts, the question is, when to stop the
optimization. This requires some experiments and depends on the shape of your

payoff function.

In this case, the values of the payoff have been changing quite fast in the beginning
and are now at the same level for quite some time. So it's a good time to attempt to
interrupt the optimization and see if you like the results. As you can see, the shape

of the orders placed is much closer to the actual order values.

The statistics shows a much better fit, with the total sum of squared error
significantly lower at the level of just 279, with a mean of 5.813. The values of the
rest of the optimized parameter can be looked up in the file with the same name as
the run name and the extension out. We can open this file from Vensim using the

Edit File command from File menu.

So far, we only know the optimal values, but not the confidence intervals. We need
now to tell Vensim to use the optimal values found and calculate the confidence

intervals around them. We are going to do it by using the output of the optimization
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and changing optimization parameters. To do this, first, we have to modify the
optimization control parameters and turn of multiple starts, and optimize them, and

save it as the optimization control type file, BOC.

Also, we need to change the value of standard deviation to the actual value to make
sure we're looking at the true values of the log-likelihood function. This value can be
found in the statistics [INAUDIBLE] again. We use it to change the variable in the

model.

Open the Optimization Control Panel again, and leave the payoff function as it is.
But on the Optimization Control Screen, open the file that was just created and
check that multiple starts and optimizer are turned off. In addition, specify
[INAUDIBLE] by choosing payoff value and entering the value by which Vensim will

change the optimal likelihood function in order to find the constants controls.

Because for likelihood ratio method, the likelihood ratio is approximated by the chi-
square distribution, it is necessary to find the value of chi-square distribution
[INAUDIBLE] for 95th percentile for one degree of freedom, because we are doing
the univariate analysis. A disadvantage of univariate confidence interval estimation
is that the parameter space is not fully explored. Hence, the effect of interaction

between parameters and log-likelihood function is ignored.

The value of chi-squared, in this case, is approximately 3.84146, which we're going
to use in the sensitivity field. Now, the [INAUDIBLE] button. And as you see, this
time, we don't have to wait as Vensim doesn't do any optimization. The results,
allocated in the file that has the name of the run-- and the word sensitive with the

extension tab.

Let's open this file and see our estimated parameters and the confidence intervals.
Since we are using too much more likelihood function, the confidence bounds are
not necessarily symmetric. This is a very simple tutorial. | hope you are now more
familiar with [INAUDIBLE] for estimating parameters and confidence intervals for

your models. Thank you.



SPEAKER 3:

A summary of the seven key steps involved in determining the MLE in Vensim is
contained on the slide. It can be printed and serve as a useful reference and check

for those wishing to use the method.

MLE has its advantages and disadvantages in estimating parameters and their
confidence intervals when performing dynamic modeling. In conclusion, when the
condition of errors being independent and identically distributed are met, then MLE
is a simple and straightforward method for estimating parameters in determining

their statistical fit in system dynamics models developed in Vensim.
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