16.001 Unified Engineering Materials and Structures

Lecture M8-M9
Statically Indeterminate Systems

Reading assignments: Connor's: Ch. 2, CDL: Ch. 2, 2.32 .4

Instructor: Raúl Radovitzky
Teaching Assistants: Grégoire Chomette, Michelle Xu, and Daniel Pickard

Massachusetts Institute of Technology
Department of Aeronautics \& Astronautics

Outline

(1) Lecture M7 - Statically Indeterminate Systems

Force-elongation relation for bars

Material test

$$
\epsilon=\frac{\delta}{L}
$$

L : length of the bar
A : area of the cross section of the bar
E : material's Young's modulus δ_{m} : elongation of the bar due to mechanical loading F : applied force

Clearly, from here we get:

$$
\frac{F=\frac{E A}{L} \delta_{m}}{3}
$$

Deformation of bars due to temperature changes: Thermal strains

Temperature changes
L : length of the bar
α : material's coefficient of thermal expansion
δ_{θ} : elongation of the bar due to thermal expansion

F : applied force
A temperature change $\Delta \theta$ causes an elongation (strain, not stress or force) that is proportional to the length of the bar L and to $\Delta \theta$. Temperature increases $\Delta \theta>0$ produces en expansion $\delta_{\theta}>0$ and viceversa. Then:

$$
\delta_{\theta}=\alpha \Delta \theta L
$$

Dimensions of $\alpha:\left[\delta_{\theta}\right]=\not \subset=[\alpha] \Theta K, \rightarrow[\alpha]=\Theta^{-1}$
In the SI, the units of α will be K^{-1}. Typical values of α are: $\alpha_{\text {aluminum }}=23 \times 10^{-6} \mathrm{~K}^{-1}, \alpha_{\text {steel }}=$ $13 \times 10^{-6} \mathrm{~K}^{-1}, \alpha_{\text {titanium }}=9 \times 10^{-6} \mathrm{~K}^{-1}$.

Remember

Temperature changes cause deformations (strains), not stresses. If these deformations are constrained, then "thermal stresses" arise.

Deformation of bars due to combined temperature changes and loads
Combined temperature and force loading of bars
By superposition, the combined loading will produce a total elongation δ_{T} which is the sum of the elongation due to the applied force or mechanical elongation δ_{m}, and the elongation produced by thermal expansion or thermal elongation δ_{θ}

$$
\begin{gathered}
\delta_{T}=\delta_{m}+\delta_{\theta} \\
\delta_{T}=\underbrace{\frac{P L}{E A}}_{\delta_{m}}+\underbrace{\alpha \Delta \theta L}_{\delta_{\theta}}
\end{gathered}
$$

Example: Built-in bar subject to temperature change

Deformation of statically determinate trusses

Objective: Compute the displacements of any joint in the truss.

Free Body Diagram \& Global Equilibrium

Equilibrium

- Note that the individual reaction components at each pin joint are not independent, as their resultant needs to be aligned with the bar. This is required as the bar can only carry axial forces.
- The reaction at the supports will therefore be of the same magnitude as the internal force in the respective bar, with an opposite direction.
- It suffices then to find out the internal loads on the bars, which can be done by applying method of joints to joint C.

Method of Joints to determine force in each rod

Method of Joints to determine force in each rod

Method of Joints to determine force in each rod

> Equilibrium of joint C
> - $\Sigma F_{1}:-\frac{\sqrt{2}}{2} F_{C A}+\frac{\sqrt{2}}{2} F_{C B}=0$
> - $\Sigma F_{2}: \frac{\sqrt{2}}{2} F_{C A}+\frac{\sqrt{2}}{2} F_{C B}-P=0$

Forces in rods:

- From $\Sigma F_{1}: F_{C A}=F_{C B}$
- From $\Sigma F_{2}: F_{C A}=\frac{P}{\sqrt{2}}$

Method of Joints to determine force in each rod

> Equilibrium of joint C
> - $\Sigma F_{1}:-\frac{\sqrt{2}}{2} F_{C A}+\frac{\sqrt{2}}{2} F_{C B}=0$
> - $\Sigma F_{2}: \frac{\sqrt{2}}{2} F_{C A}+\frac{\sqrt{2}}{2} F_{C B}-P=0$

Forces in rods:

- From $\Sigma F_{1}: F_{C A}=F_{C B}$
- From $\Sigma F_{2}: F_{C A}=\frac{P}{\sqrt{2}}$

Method of Joints to determine force in each rod

Equilibrium of joint C

- $\Sigma F_{1}:-\frac{\sqrt{2}}{2} F_{C A}+\frac{\sqrt{2}}{2} F_{C B}=0$
- $\Sigma F_{2}: \frac{\sqrt{2}}{2} F_{C A}+\frac{\sqrt{2}}{2} F_{C B}-P=0$

Forces in rods:

- From $\Sigma F_{1}: F_{C A}=F_{C B}$
- From $\Sigma F_{2}: F_{C A}=\frac{P}{\sqrt{2}}$

Having figured out the internal forces independently, we can compute the deformation of each bar and after the overall displacement of joint C

Let's keep it simple for now and make the following assumptions for each rod:

- Same Young's modulus, E
- Same cross section, A
- Stiffness: $K=\frac{E A}{L}$

Constitutive relation:

- between force $F_{X Y}$ and elongation δ
- $F_{X Y}=K \delta \quad \Rightarrow \quad \delta=\frac{L P}{\sqrt{2} E A}$

Next, compatibility: compute displacement of joint C.

Let's keep it simple for now and make the following assumptions for each rod:

- Same Young's modulus, E
- Same cross section, A
- Stiffness: $K=\frac{E A}{L}$

Constitutive relation:

- between force $F_{X Y}$ and elongation δ
- $F_{X Y}=K \delta \quad \Rightarrow \quad \delta=\frac{L P}{\sqrt{2} E A}$

Next, compatibility: compute displacement of joint C.

Compatibility to compute the displacement of joint C

Compatibility relations:

- $C \in \operatorname{Circle}(A, L+\delta)$
- $C \in \operatorname{Circle}(\mathrm{~B}, \mathrm{~L}+\delta)$

Compatibility to compute the displacement of joint C

Compatibility relations:

- $C \in \operatorname{Circle}(A, L+\delta)$
- $C \in \operatorname{Circle}(B, L+\delta)$
- $C \in \operatorname{Circle}(\mathrm{~A}, \mathrm{~L}+\delta) \cap \operatorname{Circle}(\mathrm{B}$, $\mathrm{L}+\delta$)

Compatibility to compute the displacement of joint C

Compatibility relations:

- $C \in \operatorname{Circle}(A, L+\delta)$
- $C \in \operatorname{Circle}(B, L+\delta)$
- $C \in \operatorname{Circle}(\mathrm{~A}, \mathrm{~L}+\delta) \cap \operatorname{Circle}(\mathrm{B}$, $\mathrm{L}+\delta$)

Small displacements and small rotations:

- $\operatorname{Circle}(\mathrm{A}, \mathrm{L}+\delta) \approx$ Tangent $@ C^{A}$
- $\operatorname{Circle}(B, L+\delta) \approx$ Tangent $@ C^{B}$

Compatibility to compute the displacement of joint C

Compatibility relations:

- $C \in \operatorname{Circle}(A, L+\delta)$
- $C \in \operatorname{Circle}(B, L+\delta)$
- $C \in \operatorname{Circle}(\mathrm{~A}, \mathrm{~L}+\delta) \cap \operatorname{Circle}(\mathrm{B}$, $\mathrm{L}+\delta$)

Small displacements and small rotations:

- Circle $(\mathrm{A}, \mathrm{L}+\delta) \approx$ Tangent $@ C^{A}$
- Circle $(\mathrm{B}, \mathrm{L}+\delta) \approx$ Tangent $@ C^{B}$
- $C \in$ Tangent $@ C^{A} \cap$ Tangent $@ C^{B}$

Compatibility to compute the displacement of joint C

Compatibility relations:

- $C \in \operatorname{Circle}(\mathrm{~A}, \mathrm{~L}+\delta)$
- $C \in \operatorname{Circle}(\mathrm{~B}, \mathrm{~L}+\delta)$
- $C \in \operatorname{Circle}(\mathrm{~A}, \mathrm{~L}+\delta) \cap \operatorname{Circle}(\mathrm{B}$, $\mathrm{L}+\delta$)

Small displacements and small rotations:

- Circle $(\mathrm{A}, \mathrm{L}+\delta) \approx$ Tangent $@ C^{A}$
- Circle $(\mathrm{B}, \mathrm{L}+\delta) \approx$ Tangent $@ C^{B}$
- $C \in$ Tangent @ $C^{A} \cap$ Tangent $@ C^{B}$

How to relate δ and u^{C} ?

How to relate rod deformation $\delta^{A C}$ to joint displacement u^{C}

- Undeformed bar AC and basis vectors: $\mathrm{e}_{A C}=\cos \theta \mathrm{e}_{1}-\sin \theta \mathrm{e}_{2}$

How to relate rod deformation $\delta^{A C}$ to joint displacement u^{C}

- Undeformed bar AC and basis vectors: $\mathrm{e}_{A C}=\cos \theta \mathrm{e}_{1}-\sin \theta \mathrm{e}_{2}$
- Elongation (greatly exaggerated)

How to relate rod deformation $\delta^{A C}$ to joint displacement u^{C}

- Undeformed bar AC and basis vectors: $\mathrm{e}_{A C}=\cos \theta \mathrm{e}_{1}-\sin \theta \mathrm{e}_{2}$
- Elongation (greatly exaggerated)
- Deformed bar $A C^{\prime}$ can rotate around point A, circular motion approximated by tangent $C^{\prime} c$.

How to relate rod deformation $\delta^{A C}$ to joint displacement u^{C}

- Undeformed bar AC and basis vectors: $\mathrm{e}_{A C}=\cos \theta \mathrm{e}_{1}-\sin \theta \mathrm{e}_{2}$
- Elongation (greatly exaggerated)
- Deformed bar $A C^{\prime}$ can rotate around point A, circular motion approximated by tangent $C^{\prime} c$.
- Deformed bar Ac

How to relate rod deformation $\delta^{A C}$ to joint displacement u^{C}

- Undeformed bar AC and basis vectors: $\mathrm{e}_{A C}=\cos \theta \mathrm{e}_{1}-\sin \theta \mathrm{e}_{2}$
- Elongation (greatly exaggerated)
- Deformed bar $A C^{\prime}$ can rotate around point A, circular motion approximated by tangent $C^{\prime} c$.
- Deformed bar Ac
- Displacement vector $\mathrm{u}^{C}=u_{1}^{C} \mathrm{e}_{1}-u_{2}^{C} \mathrm{e}_{2}$

How to relate rod deformation $\delta^{A C}$ to joint displacement u^{C}

- Undeformed bar AC and basis vectors: $\mathrm{e}_{A C}=\cos \theta \mathrm{e}_{1}-\sin \theta \mathrm{e}_{2}$
- Elongation (greatly exaggerated)
- Deformed bar $A C^{\prime}$ can rotate around point A, circular motion approximated by tangent $C^{\prime} c$.
- Deformed bar Ac
- Displacement vector $u^{C}=u_{1}^{C} \mathrm{e}_{1}-u_{2}^{C} \mathrm{e}_{2}$
- Obtain sought relation by noticing that the elongation $\delta^{A C}$ is ALWAYS the projection of the displacement vector on the undeformed direction of the bar.

How to relate rod deformation $\delta^{A C}$ to joint displacement u^{C}

- Undeformed bar AC and basis vectors: $\mathrm{e}_{A C}=\cos \theta \mathrm{e}_{1}-\sin \theta \mathrm{e}_{2}$
- Elongation (greatly exaggerated)
- Deformed bar $A C^{\prime}$ can rotate around point A, circular motion approximated by tangent $C^{\prime} c$.
- Deformed bar Ac
- Displacement vector $\mathrm{u}^{C}=u_{1}^{C} \mathrm{e}_{1}-u_{2}^{C} \mathrm{e}_{2}$
- Obtain sought relation by noticing that the elongation $\delta^{A C}$ is ALWAYS the projection of the displacement vector on the undeformed direction of the bar.

$$
\begin{gathered}
\mathrm{u}^{C} \cdot \mathrm{e}_{A C}=\delta^{A C} \\
u_{1}^{C} \cos \theta+\left(-u_{2}^{C}\right)(-\sin \theta)=\delta^{A C} \\
u_{1}^{C} \cos \theta+u_{2}^{C} \sin \theta=\delta^{A C}
\end{gathered}
$$

How to relate rod deformation $\delta^{A C}$ to joint displacement u^{C}

- Undeformed bar AC and basis vectors: $\mathrm{e}_{A C}=\cos \theta \mathrm{e}_{1}-\sin \theta \mathrm{e}_{2}$
- Elongation (greatly exaggerated)
- Deformed bar $A C^{\prime}$ can rotate around point A, circular motion approximated by tangent $C^{\prime} c$.
- Deformed bar Ac
- Displacement vector $\mathrm{u}^{C}=u_{1}^{C} \mathrm{e}_{1}-u_{2}^{C} \mathrm{e}_{2}$
- Obtain sought relation by noticing that the elongation $\delta^{A C}$ is ALWAYS the projection of the displacement vector on the undeformed direction of the bar.

$$
\begin{gathered}
\mathrm{u}^{C} \cdot \mathrm{e}_{A C}=\delta^{A C} \\
u_{1}^{C} \cos \theta+\left(-u_{2}^{C}\right)(-\sin \theta)=\delta^{A C} \\
u_{1}^{C} \cos \theta+u_{2}^{C} \sin \theta=\delta^{A C}
\end{gathered}
$$

For each bar, compatibility equation relating elongation with joint displacement

Computation of the displacement of joint C

From constitutive relation:

$$
\delta=\frac{L P}{\sqrt{2} E A}
$$

From displacement compatibility:

$$
\delta=u_{1}^{C} \cos \theta+u_{2}^{C} \sin \theta
$$

From symmetry:

$$
u_{1}^{c}=0 \Rightarrow \delta=u_{2}^{c} \frac{\sqrt{2}}{2}
$$

Then:

$$
u_{2}^{c}=\frac{L P}{2 E A}
$$

Use a very similar approach when solving statically indeterminate systems.

Objective: Compute internal forces in bars and displacements of joints.

Free Body Diagram \& Global Equilibrium

Free Body Diagram \& Global Equilibrium

Notice that in this case the FBD of the overall structure does not help much: it exposes six unknown reaction components but we know that the reactions will need to be aligned with the corresponding bars and have the same magnitude and opposite direction, i.e. the reactions are fully determined once the forces on the bars are known. This means that we could skip the computation of the reactions at this point and concentrate on the bars. For completeness, we provide the equations.

Free Body Diagram \& Global Equilibrium

Equilibrium

- $\Sigma F_{1}: R_{1}^{A}+R_{1}^{D}+R_{1}^{B}=0$
- $\Sigma F_{2}: R_{2}^{A}+R_{2}^{D}+R_{2}^{B}-P=0$
- ΣM^{D}.

$$
-\frac{\dot{L}}{|\tan \alpha|} R_{2}^{A}+\frac{L}{|\tan \beta|} R_{2}^{B}=0
$$

Free Body Diagram \& Global Equilibrium

Reactions:

- In principle 6 unknowns \& 3 equations
- However, members can only carry axial force: components of each reaction force vector are related (i.e. vector direction known, only magnitude is unknown, only three unknowns
- Another however: not really 3 equations since all reactions concurrent to point C , still indeterminate)

Method of Joints to determine force in each rod

Method of Joints to determine force in each rod

Equilibrium of joint C

- $\Sigma F_{1}: \cos \beta F_{C B}-\cos \alpha F_{C A}=0$
- ΣF_{2} :

$$
+\sin \beta F_{C B}+\sin \alpha F_{C A}+F_{C D}=P
$$

Equilibrium gives two equations and three unknowns, the problem is STATICALLY INDETERMINATE

Method of Joints to determine force in each rod

Equilibrium of joint C

- $\Sigma F_{1}: \cos \beta F_{C B}-\cos \alpha F_{C A}=0$
- ΣF_{2} :

$$
+\sin \beta F_{C B}+\sin \alpha F_{C A}+F_{C D}=P
$$

Equilibrium gives two equations and three unknowns, the problem is STATICALLY INDETERMINATE

Method of Joints to determine force in each rod

Equilibrium of joint C

- $\Sigma F_{1}: \cos \beta F_{C B}-\cos \alpha F_{C A}=0$
- ΣF_{2} :
$+\sin \beta F_{C B}+\sin \alpha F_{C A}+F_{C D}=P$
Equilibrium gives two equations and three unknowns, the problem is STATICALLY INDETERMINATE

We need to consider the deformation of each rod

Constitutive relation: for simplicity, we will assume:

- Same Young's modulus, E
- Same cross section, A
- $\delta_{X Y}=\frac{L_{X Y} F_{X Y}}{E A}$

Constitutive relation: for simplicity, we will assume:

- Same Young's modulus, E
- Same cross section, A
- $\delta_{X Y}=\frac{L_{X Y} F_{X Y}}{E A}$

Deformation in each rod:

- $\operatorname{rod} C A: \quad \delta_{C A}=\frac{L}{\sin \alpha} \frac{F_{C A}}{E A}$
- $\operatorname{rod} C D: \quad \delta_{C D}=\frac{L F_{C D}}{E A}$
- $\operatorname{rod} \mathrm{CB}: \quad \delta_{C B}=\frac{L}{\sin \beta} \frac{F_{C B}}{E A}$

Constitutive relation: for simplicity, we will assume:

- Same Young's modulus, E
- Same cross section, A
- $\delta_{X Y}=\frac{L_{X Y} F_{X Y}}{E A}$

Deformation in each rod:

- $\operatorname{rod} \mathrm{CA}: \quad \delta_{C A}=\frac{L}{\sin \alpha} \frac{F_{C A}}{E A}$
- $\operatorname{rod} C D: \quad \delta_{C D}=\frac{L F_{C D}}{E A}$
- $\operatorname{rod} \mathrm{CB}: \quad \delta_{C B}=\frac{L}{\sin \beta} \frac{F_{C B}}{E A}$

This adds three equations but also three unknowns, we need to enforce compatibility to close the system of equations

Compatibility condition to determine the displacement of joint C

Compatibility condition:

- Small displacements \& rotations
- $\delta_{C Y}=u_{1}^{C} \cos \theta+u_{2}^{C} \sin \theta$

Compatibility condition to determine the displacement of joint C

Compatibility condition:

- Small displacements \& rotations
- $\delta_{C Y}=u_{1}^{C} \cos \theta+u_{2}^{C} \sin \theta$

Deformation in each rod:

- $\operatorname{rod} \mathrm{CD}: u_{2}^{C}=\delta_{C D}$
- Then:

$$
\left\{\begin{array}{c}
\delta_{C A}=u_{1}^{c} \cos \alpha+\delta_{C D} \sin \alpha \\
\delta_{C B}=-u_{1}^{c} \cos \beta+\delta_{C D} \sin \beta \\
\delta_{C D}=u_{2}^{c}
\end{array}\right.
$$

Compatibility condition to determine the displacement of joint C

Compatibility condition:

- Small displacements \& rotations
- $\delta_{C Y}=u_{1}^{C} \cos \theta+u_{2}^{C} \sin \theta$

Deformation in each rod:

- $\operatorname{rod} \mathrm{CD}: u_{2}^{C}=\delta_{C D}$
- Then:

$$
\left\{\begin{array}{c}
\delta_{C A}=u_{1}^{c} \cos \alpha+\delta_{C D} \sin \alpha \\
\delta_{C B}=-u_{1}^{c} \cos \beta+\delta_{C D} \sin \beta \\
\delta_{C D}=u_{2}^{c}
\end{array}\right.
$$

Let's put everything together and count unknowns and equations

Putting everything together

Equilibrium

$$
\left\{\begin{array}{l}
\cos \beta F_{C B}-\cos \alpha F_{C A}=0 \\
\sin \beta F_{C B}+\sin \alpha F_{C A}+F_{C D}=P
\end{array}\right.
$$

Constitutive relation

$$
\left\{\begin{array}{l}
\frac{E A}{L} \sin \alpha \delta_{C A}=F_{C A} \\
\frac{E A}{L} \sin \beta \delta_{C B}=F_{C B} \\
\frac{E A}{L} \delta_{C D}=F_{C D}
\end{array}\right.
$$

Compatibility

$$
\left\{\begin{array}{c}
\delta_{C A}=u_{1}^{C} \cos \alpha+u_{2}^{C} \sin \alpha \\
\delta_{C B}=u_{1}^{c} \cos \beta+u_{2}^{C} \sin \beta \\
\delta_{C D}=u_{2}^{C}
\end{array}\right.
$$

We have 7 unknowns and 7 equations. Let's solve them for $\beta=\alpha$.

Special case: $\beta=\alpha$.

Equilibrium

$$
\left\{\begin{array}{l}
F_{C B}=F_{C A} \tag{1}\\
2 \sin \alpha F_{C A}+F_{C D}=P
\end{array}\right.
$$

Constitutive relation

$$
\left\{\begin{array}{l}
\frac{E A}{L} \sin \alpha \delta_{C A}=F_{C A} \tag{2}\\
\frac{E A}{L} \sin \alpha \delta_{C B}=F_{C B} \\
\frac{E A}{L} \delta_{C D}=F_{C D}
\end{array}\right.
$$

Compatibility

$$
\left\{\begin{array}{c}
u_{1}^{C}=0, \delta_{C D}=u_{2}^{C} \tag{3}\\
\delta_{C A}=\delta_{C B}=u_{2}^{C} \sin \alpha
\end{array}\right.
$$

Replacing (3) in (2) and then in (1)

which gives:

$$
u_{2}^{C}=\frac{P}{E A} L \frac{1}{2 \sin ^{3} \alpha+1}
$$

$$
F_{C D}=P \frac{1}{2 \sin ^{3} \alpha+1}
$$

$$
F_{C A}=F_{C B}=P \frac{\sin \alpha}{2 \sin ^{3} \alpha+1}
$$

MIT OpenCourseWare
https://ocw.mit.edu/
16.001 Unified Engineering: Materials and Structures

Fall 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

