16.001 Unified Engineering Materials and Structures

Concept and uses of stress at a point

Reading assignments: CDL: 4.2-4.7

Instructor: Raúl Radovitzky

Teaching Assistants: Grégoire Chomette, Michelle Xu, and Daniel Pickard

Massachusetts Institute of Technology
Department of Aeronautics \& Astronautics

Outline

(1) Mathematical preliminaries

- Indicial notation and summation convention -
(2)

0

0

Indicial notation and summation convention

A convenient way to write complicated expressions involving vectors and tensor.

Definitions

Free index: A subscript index $i=1,3,()_{i}$ will be denoted a free index if it is not repeated in the same additive term where the index appears. Free means that the index represents all the values in its range.

- Latin indices will range from 1 to, $(i, j, k, \ldots=1,2,3)$,
- greek indices will range from 1 to $2,(\alpha, \beta, \gamma, \ldots=1,2)$.

Indicial notation and summation convention

A convenient way to write complicated expressions involving vectors and tensor.

Definitions

Free index: A subscript index $i=1,3,()_{i}$ will be denoted a free index if it is not repeated in the same additive term where the index appears. Free means that the index represents all the values in its range.

- Latin indices will range from 1 to, $(i, j, k, \ldots=1,2,3)$,
- greek indices will range from 1 to $2,(\alpha, \beta, \gamma, \ldots=1,2)$.

Examples

(1) $a_{i 1}$ implies a_{11}, a_{21}, a_{31}. (one free index)
(2) $x_{\alpha} y_{\beta}$ implies $x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}$ (two free indices).
(3) $a_{i j}$ implies $a_{11}, a_{12}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}$ (two free indices implies 9 values).
(4) $\frac{\partial \sigma_{i j}}{\partial x_{j}}+b_{i}=0$ has a free index (i), therefore it represents three equations:

$$
\frac{\partial \sigma_{1 j}}{\partial x_{j}}+b_{1}=0, \frac{\partial \sigma_{2 j}}{\partial x_{j}}+b_{2}=0, \frac{\partial \sigma_{3 j}}{\partial x_{j}}+b_{3}=0
$$

Definitions

Summation convention: When a repeated index is found in an expression (inside an additive term) the summation of the terms ranging all the possible values of the indices is implied, i.e.:

$$
a_{i} b_{i}=\sum_{i=1}^{3} a_{i} b_{i}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Note that the choice of index is immaterial:

$$
a_{i} b_{i}=a_{k} b_{k}
$$

Examples

(1) $a_{i i}=a_{11}+a_{22}+a_{33}$
(2) $t_{i}=\sigma_{i j} n_{j}$ implies the three equations (why?):

$$
\begin{aligned}
& t_{1}=\sigma_{11} n_{1}+\sigma_{12} n_{2}+\sigma_{13} n_{3} \\
& t_{2}=\sigma_{21} n_{1}+\sigma_{22} n_{2}+\sigma_{23} n_{3} \\
& t_{3}=\sigma_{31} n_{1}+\sigma_{32} n_{2}+\sigma_{33} n_{3}
\end{aligned}
$$

Indicial notation and summation convention, continued

Other important rules about indicial notation:
(1) An index cannot appear more than twice in a single additive term, it's either free or repeated only once.

$$
a_{i}=b_{i j} c_{j} d_{j} \text { is INCORRECT }
$$

(2) In an equation the lhs and rhs, as well as all the terms on both sides must have the same free indices

- $a_{i} b_{k}=c_{i j} d_{k j}$ free indices i, k, CORRECT
- $a_{i} b_{k}=c_{i j} d_{k j}+e_{i} f_{j j}+g_{k} p_{i} q_{r}$ INCORRECT, second term is missing free index k and third term has extra free index r

Vectors I

Definition of a basis in \mathbb{R}^{3}

A basis in \mathbb{R}^{3} is given by any set of linearly independent vectors $\mathbf{e}_{i},\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$. From now on, we will assume that these basis vectors are orthonormal, i.e., they have a unit length and they are orthogonal with respect to each other. This can be expressed using dot products:

$$
\begin{gathered}
\mathbf{e}_{1} \cdot \mathbf{e}_{1}=1, \mathbf{e}_{2} \cdot \mathbf{e}_{2}=1, \mathbf{e}_{3} \cdot \mathbf{e}_{3}=1, \\
\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0, \mathbf{e}_{1} \cdot \mathbf{e}_{3}=0, \mathbf{e}_{2} \cdot \mathbf{e}_{3}=0, \ldots
\end{gathered}
$$

Vectors II

The Kronecker Delta

Using indicial notation we can write these expressions in very succinct form as follows:

$$
\mathbf{e}_{i} \cdot \mathbf{e}_{j}=\delta_{i j}
$$

In the last expression the symbol $\delta_{i j}$ is defined as the Kronecker delta:

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Vectors III

Examples

$$
\begin{aligned}
a_{i} \delta_{i j}= & a_{1} \delta_{11}+a_{2} \delta_{21}+a_{3} \delta_{31}, \\
& a_{1} \delta_{12}+a_{2} \delta_{22}+a_{3} \delta_{32}, \\
& a_{1} \delta_{13}+a_{2} \delta_{23}+a_{3} \delta_{33} \\
= & a_{1} 1+a_{2} 0+a_{3} 0, \\
& a_{1} 0+a_{2} 1+a_{3} 0, \\
& a_{1} 0+a_{2} 0+a_{3} \\
= & a_{1}, \\
& a_{2}, \\
& a_{3}
\end{aligned}
$$

or more succinctly: $a_{i} \delta_{i j}=a_{j}$, i.e., the Kronecker delta can be thought of an "index replacer".

Vectors IV

Definition of a vector

A vector \mathbf{v} will be represented as:

$$
\mathbf{v}=v_{i} \mathbf{e}_{i}=v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2}+v_{3} \mathbf{e}_{3}
$$

The v_{i} are the components of \mathbf{v} in the basis \mathbf{e}_{i}. These components are the projections of the vector on the basis vectors:

$$
\mathbf{v}=v_{j} \mathbf{e}_{j}
$$

Taking the dot product with basis vector \mathbf{e}_{i} :

$$
\mathbf{v .} \mathbf{e}_{i}=v_{j}\left(\mathbf{e}_{j} . \mathbf{e}_{i}\right)=v_{j} \delta_{j i}=v_{i}
$$

Transformation of basis

Given two bases $\mathbf{e}_{i}, \tilde{\mathbf{e}}_{k}$ and a vector \mathbf{v} whose components in each of these bases are v_{i} and \tilde{v}_{k}, respectively, we seek to express the components in basis in terms of the components in the other basis. Since the vector is unique:

$$
\mathbf{v}=\tilde{v}_{m} \tilde{\mathbf{e}}_{m}=v_{n} \mathbf{e}_{n}
$$

Taking the dot product with $\tilde{\mathbf{e}}_{i}$:

$$
\mathbf{v} \cdot \tilde{\mathbf{e}}_{i}=\tilde{v}_{m}\left(\tilde{\mathbf{e}}_{m} \cdot \tilde{\mathbf{e}}_{i}\right)=v_{n}\left(\mathbf{e}_{n} \cdot \tilde{\mathbf{e}}_{i}\right)
$$

But $\tilde{v}_{m}\left(\tilde{\mathbf{e}}_{m} \cdot \tilde{\mathbf{e}}_{i}\right)=\tilde{v}_{m} \delta_{m i}=\tilde{v}_{i}$ from which we obtain:

$$
\tilde{v}_{i}=\mathbf{v} . \tilde{\mathbf{e}}_{i}=v_{j}\left(\mathbf{e}_{j} . \tilde{\mathbf{e}}_{i}\right)
$$

Note that $\left(\mathbf{e}_{j} . \tilde{\mathbf{e}}_{i}\right)$ are the direction cosines of the basis vectors of one basis on the other basis:

$$
\mathbf{e}_{j} \cdot \tilde{\mathbf{e}}_{i}=\left\|\mathbf{e}_{j}\right\|\left\|\tilde{\mathbf{e}}_{i}\right\| \cos \widehat{\mathbf{e}_{j} \tilde{\mathbf{e}}_{i}}
$$

Permutation tensor, cross product I

Definition

Permutation Tensor:

$$
\epsilon_{m n p}= \begin{cases}0 & \text { when any two indices are equal } \\ 1 & \text { when } m n p \text { is an even permutation of } 1,2,3 \\ -1 & \text { when } m n p \text { is an odd permutation of } 1,2,3\end{cases}
$$

Odd permutation

Permutation tensor, cross product II

Examples

$$
\epsilon_{123}=\epsilon_{231}=\epsilon_{312}=1, \epsilon_{213}=\epsilon_{321}=\epsilon_{132}=-1, \epsilon_{112}=\epsilon_{233}=\epsilon_{222}=\cdots=0
$$

Source and usefulness: Cross products of cartesian basis vectors

$$
\begin{gathered}
\mathbf{e}_{1} \times \mathbf{e}_{1}=\mathbf{0}, \mathbf{e}_{2} \times \mathbf{e}_{2}=\mathbf{0}, \mathbf{e}_{3} \times \mathbf{e}_{3}=\mathbf{0}, \\
\mathbf{e}_{1} \times \mathbf{e}_{2}=(+1) \mathbf{e}_{3}, \mathbf{e}_{2} \times \mathbf{e}_{3}=(+1) \mathbf{e}_{1}, \mathbf{e}_{3} \times \mathbf{e}_{1}=(+1) \mathbf{e}_{2}, \\
\mathbf{e}_{1} \times \mathbf{e}_{3}=(-1) \mathbf{e}_{2}, \mathbf{e}_{3} \times \mathbf{e}_{2}=(-1) \mathbf{e}_{1}, \mathbf{e}_{2} \times \mathbf{e}_{1}=(-1) \mathbf{e}_{3},
\end{gathered}
$$

These can all be captured by

$$
\mathbf{e}_{i} \times \mathbf{e}_{j}=\epsilon_{i j k} \mathbf{e}_{k}
$$

Permutation tensor, cross product III

Example

$$
\mathbf{e}_{1} \times \mathbf{e}_{2}=\underbrace{\epsilon_{121}}_{=0} \mathbf{e}_{1}+\underbrace{\epsilon_{122}}_{=0} \mathbf{e}_{2}+\underbrace{\epsilon_{123}}_{=1} \mathbf{e}_{3}=\mathbf{e}_{3}
$$

We can also observe that

$$
\left(\mathbf{e}_{i} \times \mathbf{e}_{j}\right) \cdot \mathbf{e}_{k}=\left(\epsilon_{i j l} \mathbf{e}_{l}\right) \cdot \mathbf{e}_{k}=\epsilon_{i j l} \delta_{k l}=\epsilon_{i j k}
$$

The permutation tensor can be used to express some of the other familiar vector operations involving cross products.

Cross product of two vectors

$$
\left.\mathbf{v} \times \mathbf{w}=\left(v_{i} \mathbf{e}_{i}\right) \times\left(w_{j}\right) \mathbf{e}_{j}\right)=v_{i} w_{j}\left(\mathbf{e}_{i} \times \mathbf{e}_{j}\right)=v_{i} w_{j} \epsilon_{i j k} \mathbf{e}_{k}
$$

Mixed or triple product of three vectors

$$
(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}=v_{i} w_{j} \epsilon_{i j l} \mathbf{e}_{l} \cdot\left(u_{k} \mathbf{e}_{k}\right)=v_{i} w_{j} u_{k} \epsilon_{i j k}
$$

Permutation tensor, cross product IV

Since the triple product can also be obtained from the determinant of the 3×3 matrix made of the components of the three vectors (either arranged in row or column form), we can use this to express the determinant of a 3×3 matrix A with components $a_{i j}$ as follows. Assign the rows of the matrix to the components of the vectors above as follows: $v_{i}=a_{1 i}, w_{j}=a_{2 j}, u_{k}=a_{3 k}$, then:

Determinant of a 3×3 Matrix

$$
|A|=a_{1 i} a_{2 j} a_{3 k} \epsilon_{i j k}
$$

Outline

(1)

- |ncicia motation and summation convention

0
(2) Concept and uses of stress at a point - Stress tensor

Consider a body in equilibrium under external surface and body forces:

We imagine a cut through the body with a plane defining the surface internal surface S with normal \mathbf{n}. The FBD on the right shows the resultant internal force (\mathbf{R}) and moment (\mathbf{M}°) required from equilibrium for the left part. We assume that these are provided by the collective action of infinitesimal pointwise forces $d \mathbf{f}$ acting on the points of S.
\mathbf{R} and \mathbf{M}° are therefore obtained as the following integrals:

$$
\begin{aligned}
\mathbf{R} & =\int_{S} d \mathbf{f} \\
\mathbf{M}^{\circ} & =\int_{S} \mathbf{r} \times d \mathbf{f}
\end{aligned}
$$

It should be clear that \mathbf{t} is a force per unit area defined at each point of surface S obtained as the limiting value of the resultant force \mathbf{f} acting on a (finite) surface area element ΔS when this tends to zero.

Stress Vector I

Definition

The stress vector at a point on ΔS is defined as:

$$
\begin{equation*}
\mathbf{t}=\lim _{\Delta S \rightarrow 0} \frac{\mathbf{f}}{\Delta S} \tag{1}
\end{equation*}
$$

Notes:

- The integral of the stress vector in the area defines the resultant internal force necessary to keep the left side in equilibrium (as we discussed before)

$$
\mathbf{R}=\int_{S} \mathbf{t} d S
$$

- Similarly, the resultant internal moment vector \mathbf{M}° with respect to a point o is given by:

$$
\mathbf{M}^{\circ}=\int_{S} \mathbf{r} \times \mathbf{t} d S
$$

Stress Vector II

In other words, the internal force and moment vectors are the equipollent force system corresponding to the colective action of the continuously distributed stress vectors \mathbf{t} on the cut surface. If the cut had gone through the same point under consideration but along a plane with a different normal, the stress vector would have been different. Let's consider the three stress vectors $\mathbf{t}^{(i)}$ acting on the planes normal to the coordinate axes.

Stress Vector III

Let's also decompose each $\mathbf{t}^{(i)}$ in its three components in the coordinate system \mathbf{e}_{i} (this can be done for any vector) as (see Figure):

$$
\begin{equation*}
\mathbf{t}^{(i)}=\sigma_{i j} \mathbf{e}_{j} \tag{2}
\end{equation*}
$$

$\sigma_{i j}$ is the component of the stress vector $\mathbf{t}^{(i)}$ along the \mathbf{e}_{j} direction.

Introduction of the Stress Tensor

Different planes passing through the point with different normals will have different stress vectors $\mathbf{t}^{(\mathbf{n})}$. Is there a relation among them? To answer this invoke equilibrium of the (shrinking) tetrahedron of material:

Cauchy's tetrahedron: equilibrium of a tetrahedron shrinking to a point.

The area of the faces of the tetrahedron are $\Delta S_{1}, \Delta S_{2}, \Delta S_{3}$ and ΔS.
We have used Newton's third law of action and reaction: $\mathbf{t}^{(-\mathbf{n})}=-\mathbf{t}^{(\mathbf{n})}$. To enforce equilibrium, we must consider the force vectors (stress vectors multiplied by respective areas) acting on each face of the tetrahedron:
$\mathbf{t}^{(\mathbf{n})} \Delta S-\mathbf{t}^{(1)} \Delta S_{1}-\mathbf{t}^{(2)} \Delta S_{2}-\mathbf{t}^{(3)} \Delta S_{3}=0$

Introduction of the Stress Tensor II

The surface area elements are related by the following formula: $\Delta S n_{i}=\Delta S_{i}$. Proof in the following mathematical aside:

By virtue of Green's Theorem:

$$
\int_{V} \nabla \phi d V=\int_{S} \mathbf{n} \phi d S
$$

applied to the function $\phi=1$, we get

$$
0=\int_{S} \mathbf{n} d S
$$

which applied to our tetrahedron gives:

$$
0=\Delta S \mathbf{n}-\Delta S_{1} \mathbf{e}_{1}-\Delta S_{2} \mathbf{e}_{2}-\Delta S_{3} \mathbf{e}_{3}
$$

If we take the scalar product of this equation with \mathbf{e}_{i}, we obtain:

$$
\Delta S\left(\mathbf{n} \cdot \mathbf{e}_{i}\right)=\Delta S_{i}
$$

or

$$
\Delta S_{i}=\Delta S n_{i}
$$

Replace in equilibrium expression:

$$
\Delta S(\mathbf{t}^{(\mathbf{n})}-\underbrace{n_{1}}_{\left(\mathbf{n} \cdot \mathbf{e}_{1}\right)} \mathbf{t}^{(1)}-\underbrace{n_{2}}_{\left(\mathbf{n} \cdot \mathrm{e}_{2}\right)} \mathbf{t}^{(2)}-\underbrace{n_{3}}_{\left(\mathbf{n} \cdot \mathrm{e}_{3}\right)} \mathbf{t}^{(3)})=0
$$

which can be written more simply (using summation convention) as:

$$
\begin{equation*}
\mathbf{t}^{(\mathbf{n})}=\underbrace{\left(\mathbf{n} \cdot \mathbf{e}_{i}\right)}_{n_{i}} \mathbf{t}^{(i)} \tag{3}
\end{equation*}
$$

Introduction of the Stress Tensor IV

Example

Consider a cut at an angle α in a truss member of cross sectional area A and subject to a force of magnitude F. The bar is subject to a uniform uniaxial stress $\sigma=\frac{F}{A}$. The stress vector at any point on a plane of normal \mathbf{e}_{1} is (see figure) $\mathbf{t}^{(1)}=\sigma \mathbf{e}_{1} . \mathbf{t}^{(2)}=\mathbf{t}^{(3)}=\mathbf{0}$. What is $\mathbf{t}^{(\mathbf{n})}$ where $\mathbf{n}=\tilde{\mathbf{e}}_{1}=\cos (\alpha) \mathbf{e}_{1}+\sin (\alpha) \mathbf{e}_{2}$?

This gives us $\mathbf{t}^{(\mathbf{n})}$ in the basis \mathbf{e}_{i}. What about in basis $\tilde{\mathbf{e}}_{i}$?

$$
\begin{aligned}
\mathbf{t}^{\left(\tilde{\mathbf{e}}_{1}\right)}= & \left(\mathbf{t}^{\left(\tilde{\mathbf{e}}_{1}\right)} \cdot \tilde{\mathbf{e}}_{1}\right) \tilde{\mathbf{e}}_{1}+\left(\begin{array}{l}
\mathbf{t}^{\left(\tilde{e}_{2}\right)} \\
25 \\
= \\
\left(\cos (\alpha) \sigma \tilde{\mathbf{e}}_{2}\right) \tilde{\mathbf{e}}_{2}=\left(\mathbf{t}^{\left(\tilde{\mathrm{e}}_{1}\right)} \cdot \tilde{\mathbf{e}}_{1}\right) \tilde{\mathbf{e}}_{1}+\left(\cos (\alpha) \sigma \tilde{\mathbf{e}}_{1} \cdot \tilde{\mathbf{e}}_{i}\right) \tilde{\mathbf{e}}_{2} \\
\\
=\sigma \cos ^{2}(\alpha) \tilde{\mathbf{e}}_{1}+\sigma \cos (\alpha)(-\sin (\alpha)) \tilde{\mathbf{e}}_{2}
\end{array}\right.
\end{aligned}
$$

Definition of stress tensor I

Going back to Eqn. (3), we can also pull \mathbf{n} as a "common factor" and create a new type of mathematical expression (tensor product):

$$
\begin{equation*}
\mathbf{t}^{(\mathbf{n})}=\mathbf{n} \cdot\left(\mathbf{e}_{1} \mathbf{t}^{(1)}+\mathbf{e}_{2} \mathbf{t}^{(2)}+\mathbf{e}_{3} \mathbf{t}^{(3)}\right)=\mathbf{n} \cdot\left(\mathbf{e}_{1} \otimes \mathbf{t}^{(1)}+\mathbf{e}_{2} \otimes \mathbf{t}^{(2)}+\mathbf{e}_{3} \otimes \mathbf{t}^{(3)}\right) \tag{4}
\end{equation*}
$$

The factor in parenthesis is the definition of the Cauchy stress tensor σ :

Definition

$$
\begin{array}{r}
\boldsymbol{\sigma}=\mathbf{e}_{1} \otimes \mathbf{t}^{(1)}+\mathbf{e}_{2} \otimes \mathbf{t}^{(2)}+\mathbf{e}_{3} \otimes \mathbf{t}^{(3)}=\mathbf{e}_{i} \otimes \mathbf{t}^{(i)} \tag{5}\\
\mathbf{t}^{(\mathbf{n})}=\mathbf{n} \cdot \boldsymbol{\sigma}
\end{array}
$$

Note these are tensorial expressions (independent of the vector and tensor components in a particular coordinate system). To obtain the tensorial

Definition of stress tensor II

components in our rectangular system we replace the expressions of $\mathbf{t}^{(i)}$ from Eqn.(2)

Definition (Stress tensor representation in cartesian coordinate basis $\mathbf{e}_{\boldsymbol{i}}$)

$$
\begin{equation*}
\boldsymbol{\sigma}=\mathbf{e}_{i} \underbrace{\sigma_{i j} \mathbf{e}_{j}}_{\mathbf{t}^{(i)}}=\sigma_{i j} \mathbf{e}_{i} \mathbf{e}_{j} \tag{6}
\end{equation*}
$$

where

$$
\sigma_{i j}=\left(\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right)
$$

are the components of the stress tensor σ in the cartesian coordinate system \mathbf{e}_{i}. Note that $\sigma_{i j}$ represent the cartesian components of the stress vectors acting on the planes with normals \mathbf{e}_{i}, i.e. $\mathbf{t}^{(i)}$

Definition of stress tensor III

The cartesian components of the stress vector on the plane with normal \mathbf{n} can be obtained by noticing that:

$$
\begin{gather*}
\mathbf{t}^{(\mathbf{n})}=\mathbf{n} \cdot \sigma_{i j} \mathbf{e}_{i} \mathbf{e}_{j}=\sigma_{i j}\left(\mathbf{n} \cdot \mathbf{e}_{i}\right) \mathbf{e}_{j}=\left(\sigma_{i j} n_{i}\right) \mathbf{e}_{j} \tag{7}\\
t_{j}^{(\mathbf{n})}=t_{j}(\mathbf{n})=\sigma_{i j} n_{i} \tag{8}
\end{gather*}
$$

MIT OpenCourseWare
https://ocw.mit.edu/
16.001 Unified Engineering: Materials and Structures

Fall 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

