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Deformation and the Strain Tensor I

As we discussed at the beginning of the course,
materials can resist loads by virtue of their
ability to deform. Some times material
deformations are imperceptible with the naked
eye but can be captured by specialized
equipment. Deformations can also occur due to
temperature. In summary, we refer to
deformation as the changes in size and shape of
the body.
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Deformation and the Strain Tensor II 
Normal strain: is the elongation or 
contraction of a line segment per unit 
length. For a line segment dx of 
undeformed infinitesimal length 
kdxk = ΔS, and deformed length 
ΔS0 = kdx0k, we define the normal 
strain in the direction of the 
undeformed segment as: 
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Engineering shear strain: γ is the 
change in angle between two 
perpedicular line segments in the 
undeformed configuration. 

π 
γ = − θ0 2 

A note on units: strains both normal 
and shear are dimensionless quantities 
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Deformation and the Strain Tensor III 

Strain - displacement relations: Deformation described by displacement field 
u(x) = ui (x)ei . Small displacement gradients assumed throughout. 

Extensional strains: Measure elongation 
of volume element in x: 
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Deformation and the Strain Tensor IV 

Shear strains: Measure changes of 
angle in volume element: Initial angle: 
π 
2 . Deformed angle: π 

2 − (θ1 + θ2). 
Engineering shear strain (Total angle 
change): γ12 = θ1 + θ2 

∂u1 ∂u2�dx�2 �dx�1∂x2 ∂x1θ1 ∼ tan θ1 = , θ2 ∼ tan θ2 =� ��dx2 �dx1 

∂u1 ∂u2
γ12 = + 

∂x2 ∂x1 

Tensor strain components defined as 
half the total angle change: : 

γ12ε12 = ε21 = 2 
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Deformation and the Strain Tensor V 

In general, deformations are not uniform throughout the body of a loaded 
structure. For example, some parts of the body may elongate, others may 
contract. This will also depend on the orientation. We wish to characterize the 
local state of deformation at each point of a material body. We therefore 
describe deformation by looking at the change of length of infinitesimal line 
segments of arbitrary directions at a point. 
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Deformation described by deformation 
mapping: 

x0 = ϕ(x) = x + u (1) 

We seek to characterize the local state 
of deformation of the material in a 
neighborhood of a point P . 
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Deformation and the Strain Tensor VI 

Consider two points P and Q in the undeformed: 

P : x = x1e1 + x2e2 + x3e3 = xi ei (2) 

Q : x + dx = (xi + dxi )ei (3) 

and deformed 

P 0 0: x = ϕ1(x)e1 + ϕ2(x)e2 + ϕ3(x)e3 = ϕi (x)ei (4) 

� � 
Q 0 0: x + dx0 = ϕi (x) + dϕi ei (5) 

configurations. In this expression, 

dx0 = dϕi ei (6) 

Expressing the differentials dϕi in terms of the partial derivatives of the 
functions ϕi (xj ej ): 

∂ϕ1 ∂ϕ1 ∂ϕ1dϕ1 = dx1 + dx2 + dx3,
∂x1 ∂x2 ∂x3 

(7) 
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Deformation and the Strain Tensor VII 

and similarly for dϕ2, dϕ3, in index notation: 

∂ϕi 

We now compute the change in length of the segment PQ which deformed into 

dϕi = 
∂xj 

dxj (8) 

Replacing in equation (5): 

Q 0 0: x + dx0 = 
� 
ϕi + 

�∂ϕi dxj ei 
∂xj 

(9) 

dx0 = 
∂ϕi dxj ei
∂xj 

(10) 

−→ 

−−→ 
segment P 0Q 0 . Undeformed length (to the square): 

ds2 = kdxk2 = dx · dx = dxi dxi (11) 
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Deformation and the Strain Tensor VIII 

Deformed length (to the square): 

2(ds0) 2 = kdx0k = dx0 · dx0 = 
∂ϕi ∂ϕidxj dxk
∂xj ∂xk 

(12) 

−→
The change in length of segment PQ is then given by the difference between 
equations (12) and (11): 

∂ϕi ∂ϕi
(ds0)2 − ds2 = dxj dxk − dxi dxi (13)

∂xj ∂xk 

We want to extract as common factor the differentials. To this end we observe 
that: 

dxi dxi = dxj dxk δjk (14) 

10/17 



Deformation and the Strain Tensor IX 

Then: 

2 ∂ϕi ∂ϕi
(ds0) − ds2 = dxj dxk − dxj dxk δjk

∂xj ∂xk � �∂ϕi ∂ϕi 
= − δjk dxj dxk

∂xj ∂xk| {z } 

2εjk : Green-Lagrange strain tensor 

Assume that the deformation mapping ϕ(x) has the form: 

ϕ(x) = x + u 

where u is the displacement field. Then, 

∂ϕi ∂xi ∂ui ∂ui 
= + = δij + 

∂xj ∂xj ∂xj ∂xj 

(15) 

(16) 

(17) 
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Deformation and the Strain Tensor X 

and the Green-Lagrange strain tensor becomes: � �� �∂um ∂um2εij = δmi + δmj + − δij
∂xi ∂xj (18)

∂ui ∂uj ∂um ∂um 
=6 δij + + + − 6 δij

∂xj ∂xi ∂xi ∂xj � �1 ∂ui ∂uj ∂um ∂umGreen-Lagrange strain tensor : εij = + + (19)2 ∂xj ∂xi ∂xi ∂xj 

When the absolute values of the derivatives of the displacement field are much 
smaller than 1, their products (nonlinear part of the strain) are even smaller 
and we’ll neglect them. We will make this assumption throughout this course. 
Mathematically: 

∂ui ∂um ∂um� 1 ⇒ ∼ 0 (20)
∂xj ∂xi ∂xj 
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Deformation and the Strain Tensor XI 

We will define the linear part of the Green-Lagrange strain tensor as the small 
strain tensor: 

εij = 
�1 ∂ui 

2 ∂xj 
+ 

�∂uj 

∂xi 
(21) 

Remarks: 
The strain tensor is symmetric 

Six independent components of strain: three normal ε11, ε22, ε33, and three 
shear ε12 = ε21, ε23 = ε32, ε31 = ε13 

Special cases: 1D, 2D 
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Transformation of strain components I 

Given: εij , ei and a new basis ẽk , determine the components of strain in the 
new basis ε̃kl � �1 ∂ũi ∂ũj

ε̃ij = + (22)2 ∂x̃j ∂x̃i 

We want to express the quantities with tilde on the right-hand side in terms of 
their non-tilde counterparts. Start by applying the chain rule of differentiation: 

∂ũi ∂ũi ∂xk 
= (23)

∂x̃j ∂xk ∂x̃j 

Transform the displacement components: 

u = ũmẽm = ul el (24) 

ũm(ẽm · ẽi ) = ul (el · ẽi ) (25) 

ũmδmi = ul (el · ẽi ) (26) 

ũi = ul (el · ẽi ) (27) 
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Transformation of strain components II 

take the derivative of ũi with respect to xk , as required by equation (23): 

∂˜ ∂ului 
= (el · ẽi ) (28)

∂xk ∂xk 

and take the derivative of the reverse transformation of the components of the 
position vector x: 

x = xj ej = x̃k ̃ek (29) 

xj (ej · ei ) = x̃k (ẽk · ei ) (30) 

xj δji = x̃k (ẽk · ei ) (31) 

xi = x̃k (ẽk · ei ) (32) 

∂xi ∂x̃k 
= (ẽk · ei ) = δkj (ẽk · ei ) = (ẽj · ei ) (33)

∂x̃j ∂x̃j 

Replacing equations (28) and (33) in (23): 

∂ũi ∂ũi ∂xk ∂ul 
= = (el · ẽi )(ẽj · ek ) (34)

∂x̃j ∂xk ∂x̃j ∂xk 

16/17 



Transformation of strain components III 
Replacing in equation (22): h i1 ∂ul ∂ul

ε̃ij = (el · ẽi )(ẽj · ek ) + (el · ẽj )(ẽi · ek ) (35)2 ∂xk ∂xk 

Exchange indices l and k in second term: 

ε̃ij = 

= 

h1 ∂ul ∂uk
(el · ẽi )(ẽj · ek ) + (ek2 ∂xk ∂xl� �1 ∂ul ∂uk 
+ (el · ẽi )(ẽj · ek )2 ∂xk ∂xl 

· ẽj )(ẽi 

i 
· el ) 

(36) 

Or, finally: 

ε̃ij = εlk (el · ẽi )(ẽj · ek ) (37) 

In other words, we obtain the same transformation equations as what we found 
for the stress tensor components. This confirms that ε = εij ei ej is a 
second-order tensor. We can therefore use all the mathematical machinery of 
transformation of second-order tensor components we derived for stresses: 
principal strains and directions, maximum shear stress and corresponding 
directions, Mohr’s circle for 2D strain states, etc. 
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