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Constitutive Material Response: Linear elasticity and Hooke’s Law 

The mechanical response of a material is characterized experimentally. A 
mathematical relation between the components of the stress and the strain 
tensor is sought. 
We have already discussed the 
uniaxial stress test and the general 
characteristics of the corresponding 
stress-strain curve relating the 
applied normal stress component 
σ11 and the corresponding normal 
strain component ε11. 

σ11 = E ε11 

We will look into this in more 
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ε =
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detail. 
This expression describing the linear response of materials in the elastic regime 
is known as Hooke’s law. This particular form applies only to a state of uniaxial 
stress. In general each and every component of the stress tensor σij can depend 
on each and every component of the strain tensor εij . We will generalize 
Hooke’s law to general states of stress and strain. 
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Generalized Hooke’s law I 

A general linear relation between stress and strain components can be written 
as: 

σij = Cijkl εkl 

Cijkl are the components of a fourth-order tensor known as the elasticity tensor. 

Transformation of tensor components upon change of basis 

Can show that basis transformation rules for fourth-order tensors are analogous 
to tensors of any order (including vectors), i.e., given the representation of 
tensor C in two different bases ei , ̃ej : 

C = Cijkl ei ej ek el = C̃mnpq ẽmẽnẽp ẽq 

Taking dot products with basis vectors ẽi four times, we find: 

C̃mnpq = Cijkl (ẽm · ei )(ẽn · ej )(ẽp · ek )(ẽq · el ) 
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Generalized Hooke’s law II 

Symmetries of the elasticity tensor How many different coefficients are there in 
a fourth order-tensor? . However, for the special case of the elasticity tensor, 
there are symmetries that reduce their number significantly. 

Implications of symmetry of stress tensor. 
This reduces the number of coefficients 
to 54, since:σij = σji 

Cijkl εkl = Cjikl εkl , ⇒ C ijkl
(Cijkl − Cjikl ) εkl = 0 |{z} 

�3x�3x3x3 = 81�| {z }Cijkl = Cjikl 
6x3x3=54 

Implications of symmetry of strain tensor. 
This reduces the number of coefficients 
to 36, since:εij = εji 

Cijkl εkl = Cijkl εlk = Cijlk εkl , ⇒ C ijkl|{z}(Cijkl − Cijlk ) εkl = 0 
�3x�3x�3x�3 = 81�| {z }Cijkl = Cijlk 

6x6=36 
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Generalized Hooke’s law III 

Finally, from thermodynamics, it can be shown that in an elastic material 
the stresses are a state function of the strains, i.e. they derive from a 
thermodynamic potential (strain energy): 

∂ψ 
σij = = Cijkl εkl (1)

∂εij 

∂2ψ ∂ � � 
= Cijkl εkl (2)

∂εmn∂εij ∂εmn 

∂2ψ 
Cijkl δkmδln = (3)

∂εmn∂εij 

∂2ψ 
Cijmn = (4)

∂εmn∂εij 

Assuming equivalence of the mixed partials: 

∂2 ∂2ψ ψ 
Cijkl = = = Cklij (5)

∂εkl ∂εij ∂εij ∂εkl 
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Generalized Hooke’s law IV 

This further reduces the number of material constants to 21. The most 
general anisotropic linear elastic material therefore has 21 material 
constants. We can write the stress-strain relations for a linear elastic 
material exploiting these symmetries as follows: 

⎤⎡⎤⎡⎤⎡ 
σ11 C1111 C1122 C1133 C1123 C1113 C1112 ε11 ⎢⎢⎢⎢⎢⎢⎣ 

σ22 

σ33 

σ23 

σ13 

⎥⎥⎥⎥⎥⎥⎦ 

= 

⎢⎢⎢⎢⎢⎢⎣ 

C2222 C2233 C2223 C2213 C2212 

C3333 C3323 C3313 C3312 

C2323 C2313 C2312 

symm C1313 C1312 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

ε22 

ε33 

2ε23 

2ε13 

⎥⎥⎥⎥⎥⎥⎦ 

(6) 

σ12 C1212 2ε12 
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Isotropic linear elastic Hooke’s law 

Let’s revisit the uniaxial stress test and consider all the deformations it 
produces. For now, let’s assume we are testing a material whose response is the 
same no matter the direction in which it is tested. We will call this material 
isotropic. 
We observe that σ11 not only produces an elongation ε11 = 

E 
1 (σ11) but also 

lateral contractions ε22 = ε33 = −νε11 = −ν 
E 
1 (σ11), where ν ≡ Poisson ratio is 

a material-dependent property. We also observe that no shear strains are 
produced for this isotropic material subject to a normal stress. 

σ11

σ11
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Isotropic linear elastic Hooke’s law 

Let’s revisit the uniaxial stress test and consider all the deformations it 
produces. For now, let’s assume we are testing a material whose response is the 
same no matter the direction in which it is tested. We will call this material 
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σ11
ε11 = 

E 

σ11

σ11
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Isotropic linear elastic Hooke’s law 

Let’s revisit the uniaxial stress test and consider all the deformations it 
produces. For now, let’s assume we are testing a material whose response is the 
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ε22 = (−νσ11)
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ε33 = (−νσ11)
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σ11

σ11
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Isotropic linear elastic Hooke’s law 

Let’s revisit the uniaxial stress test and consider all the deformations it 
produces. For now, let’s assume we are testing a material whose response is the 
same no matter the direction in which it is tested. We will call this material 
isotropic. 
We observe that σ11 not only produces an elongation ε11 = 

E 
1 (σ11) but also 

lateral contractions ε22 = ε33 = −νε11 = −ν 
E 
1 (σ11), where ν ≡ Poisson ratio is 

a material-dependent property. We also observe that no shear strains are 
produced for this isotropic material subject to a normal stress. 

1 
ε11 = [σ11 − ν (σ22) ] 

E 
1 

ε22 = (−νσ11)
E 
1 

ε33 = (−νσ11)
E 

σ11

σ11
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Isotropic linear elastic Hooke’s law 

We now superimpose a uniaxial stress σ22. Similarly, this only produces an 
elongation ε22 = 

E 
1 (σ22) but also lateral contractions 

ε11 = ε33 = −νε22 (σ22),= −ν 1 
E 

1 
ε11 = [σ11−ν (σ22)]

E 
1 

ε22 = [σ22 − ν (σ11)]
E 
1 

ε33 = [−ν (σ11 + σ22)]
E 

σ11

σ22

σ11

σ22
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Isotropic linear elastic Hooke’s law 

We now superimpose a uniaxial stress σ33. Similarly, this only produces an 
elongation ε33 = 

E 
1 (σ33) but also lateral contractions 

ε11 = ε22 = −νε33 (σ33),= −ν 1 
E 

1 
ε11 = [σ11 − ν (σ22 + σ33)]

E 
1 

ε22 = [σ22 − ν (σ11 + σ33)]
E 
1 

ε33 = [σ33 − ν (σ11 + σ22)]
E 

σ11

σ22

σ33

σ11

σ22

σ33
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Shear response of isotropic linear elastic materials 

We conceive a pure shear test as shown on the 
figure on the right. 

We apply a shear stress component σ12 = τ to a 
block of material and measure the total shear 
strain 2ε12 = γ. No other strains are observed in 
an isotropic material. 

In the linear elastic range, the slope of the linear 
function relating these two quantities, is defined as 
the shear modulus G , i.e.: 

σ12 = τ = G γ = G 2ε12 

The same response is expected in any other of the 
shear directions, i.e.: 

ττ

τ

τ

γ

τ

G

σ23 = τ = Gγ = G 2ε23 σ31 = τ = G γ = G 2ε31 
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General  stress-strain relations for isotropic linear elastic materials: Hooke’s Law I 

With the results from these conceptual experimental tests and the elastic 
properties identified above, we can write the complete stress-strain relations in 
(6) in the following (inverted) form:⎡⎤⎡ ⎤⎡⎤

1 −ν −ν 0 0 0ε11 σ11E E E 
−ν 1 −ν⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ = 

⎢⎢⎢⎢⎢⎢⎣ 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

⎥⎥⎥⎥⎥⎥⎦
ε22
ε33
2ε23 

2ε13 

0 0 0 σ22 

σ33 

σ23 

σ13 

E E E 
−ν −ν 1 0 0 0
E E E (7)
0 0 0 1 0 0

G 
0 0 0 0 1 0

G 
2ε12 0 0 0 0 0 

G 
1 σ12

This suggests that isotropic linear elastic materials have three different 
constants: the elastic or Young’s modulus E , the Poisson ratio ν and the shear 
modulus G . However, we can show that they are not all independent. The 
proof, is based on the realization, that the pure shear test is another test in 
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General  stress-strain relations for isotropic linear elastic materials: Hooke’s Law II 

disguise. All we need to do is to rotate the applied state of stress and observed 
strains to principal directions: � � � � � 

γ � � 
γ � 

0 τ τ 0 0 0 → , γ 
2 → 2 

− γτ 0 0 −τ 0 0
2 2 

So in principal axes, our pure shear test has stress components 

σ11 = σI = τ, σ22 = σII = −τ, 

and strain components 

γ γ 
ε11 = εI = , ε22 = εII = − 

2 2 
Applying Hooke’s law to this set of normal stresses and strains: ⎛ 

σ11 z 
σ}|22 {⎞ 

γ 1 z}|{
ε11 = = ⎝ τ −ν (−τ )⎠

2 E 

2 
γ = (1 + ν)τ 

E 
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General stress-strain relations for isotropic linear elastic materials: Hooke’s Law III

But the coefficient relating γ and τ is 
G 
1 , from where we conclude that:

E 
G = 

2(1 + ν) 

The second law of thermodynamics, which you will study in the spring, requires 
the shear modulus to be positive, or the material would require negative work 
(give me energy) when I try to deform it, instead of requiring positive work. 
This enforces a restriction on the possible values of the Poisson ratio ν > −1 . 
As we discussed in class, most materials have positive Poisson ratios. 

17



General  stress-strain relations for isotropic linear elastic materials: Hooke’s Law IV

We can now rewrite: 

Hooke’s law in matrix form 

⎤⎡⎤⎡⎤⎡ 
ε11 1 −ν −ν 0 0 0 σ11⎢⎢⎢⎢⎢⎢⎣ 

ε22
ε33
2ε23 

2ε13 

⎥⎥⎥⎥⎥⎥⎦ = 
1 
E 

⎢⎢⎢⎢⎢⎢⎣ 

−ν 1 −ν 0 0 0 
−ν −ν 1 0 0 0 
0 0 0 2(1 + ν) 0 0 
0 0 0 0 2(1 + ν) 0 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

σ22 

σ33 

σ23 

σ13 

⎥⎥⎥⎥⎥⎥⎦ (8) 

2ε12 0 0 0 0 0 2(1 + ν) σ12
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General  stress-strain relations for isotropic linear elastic materials: Hooke’s Law V

or just the plain equations exposing the actual couplings among normal and shear stresses and strains: 

             Hooke’s law for isotropic linear elastic materials 

1 
ε11 = [σ11 − ν (σ22 + σ33)] (9)

E 
1 

ε22 = [σ22 − ν (σ11 + σ33)] (10) 
E 
1 

ε33 = [σ33 − ν (σ11 + σ22)] (11) 
E 

1 
2ε23 = σ23 (12)

G 
1 

2ε31 = σ31 (13)
G 
1 

2ε12 = σ12 (14)
G 

We can now use this knowledge to explore special states of stress and strain 
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Special states of stress and strain I 

We will be using Hooke’s law in a variety of special cases in which something is 
known about the state of stress and/or strain. It is interesting to see how the 
constitutive equations specialize to each one of those cases. 

Uniaxial stress: 

In this case, the only stress component is σ11 = σ (for example), and all others 
are zero: σ2j = σ3j = 0. Using the constitutive laws, we obtain the only 
non-zero strains: 

1 
ε11 = σ 

E 
−ν

ε22 = σ 
E 
−ν

ε33 = σ 
E 
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Special states of stress and strain II 

Plane stress: 

this means that stresses can only be in the plane, say e1-e2, i.e. 
σ33 = σ31 = σ23 = 0. 

The constitutive equations simplify 
Inverting these, we get:to: 

E1 σ11 = (ε11 + νε22)ε11 = (σ11 − νσ22) 1 − ν2E 
1 E 

=ε22 = (σ22 − νσ11) σ22 (ε22 + νε11)
1 − ν2 

−ν −ν 
E 

ε33 = (σ11 + σ22) ε33 = (ε11 + ε22)
E 1 − ν 

1 σ12 = 2G ε122ε12 = σ12
G 
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Special states of stress and strain III 

Plane strain: 

this means that strains can only be in the plane, say e1-e2, i.e. 
ε33 = ε31 = ε23 = 0. 

The constitutive equations simplify Inverting these, we get: 
to: 

E
1 σ11 = [(1 − ν)ε11 + νε22]ε11 = [σ11 − ν (σ22 + σ33)] (1 + ν)(1 − 2ν)
E 

E1 σ22 = [(1 − ν)ε22 + νε11]ε22 = [σ22 − ν (σ33 + σ11)] (1 + ν)(1 − 2ν) 
1 νE 
E 

0 = [σ33 − ν (σ11 + σ22)] σ33 = (ε11 + ε22)
E (1 + ν)(1 − 2ν) 

1 
2ε12 = σ12 σ12 = 2G ε12 

G 
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Special states of stress and strain IV 

Uniaxial strain: 

this means that strains can only be in 1D, say e1, i.e. ε2j = ε3j = 0. 

The first three constitutive 
equations simplify to: Inverting these, we get: 

1 E (1 − ν)ε11 = [σ11 − ν (σ22 + σ33)] σ11 = ε11E (1 + ν)(1 − 2ν)
1 

0 = [σ22 − ν (σ33 + σ11)] νE 
E σ22 = σ33 = ε11

(1 + ν)(1 − 2ν)1 
0 = [σ33 − ν (σ11 + σ22)]

E 
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Bulk Modulus 

Establishes a relation between the hydrostatic stress or pressure: p = 
3
1 σkk and 

the volumetric strain θ = εkk . 

E 
p = K θ ; K = (15)

3(1 − 2ν) 

To see this, add up the first three isotropic Hooke’s constitutive equations in 
compliance form: 

1 
ε11 + ε22 + ε33 = [(σ11 + σ22 + σ33) − ν ((σ22 + σ33) + (σ11 + σ33) + (σ11 + σ22))]| {z } E 

εkk =θ 

1 
= [(σ11 + σ22 + σ33) − 2ν (σ11 + σ22 + σ33)]

E 
1 

= (σ11 + σ22 + σ33)(1 − 2ν)
E | {z } 

σkk =3p 

3(1 − 2ν)
θ = p | {zE } 

1/K 
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Orthotropic linear elastic Hooke’s law: Orthogonal composites 

Let’s repeat our process of superimposing uniaxial stress states as we did for 
isotropic materials, but now, let’s assume that the material is a composite with 
different fiber density in each direction. We thus expect a different stiffness in 
each direction as well. We will call this material orthotropic. 
We observe that σ11 not only produces an elongation ε11 = 1 (σ11) but alsoE1 
lateral contractions ε22 = −ν12ε11, ε33 = −ν13ε11. We also observe that no 
shear strains are produced as the load is aligned with the direction of the fibers 
(which are all aligned with the axes directions). 

σ11

σ11
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Orthotropic linear elastic Hooke’s law: Orthogonal composites 

Let’s repeat our process of superimposing uniaxial stress states as we did for 
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(which are all aligned with the axes directions). 

σ11
ε11 = 

E1 

σ11

σ11
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Orthotropic linear elastic Hooke’s law: Orthogonal composites 

Let’s repeat our process of superimposing uniaxial stress states as we did for 
isotropic materials, but now, let’s assume that the material is a composite with 
different fiber density in each direction. We thus expect a different stiffness in 
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σ11
ε11 = 

E1 
σ11

ε22 = −ν12 
E1 σ11

σ11
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Orthotropic linear elastic Hooke’s law: Orthogonal composites 

Let’s repeat our process of superimposing uniaxial stress states as we did for 
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σ11
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σ11
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E1 

σ11

σ11
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Orthotropic linear elastic Hooke’s law: Orthogonal composites 

We now superimpose a uniaxial stress σ22. Similarly, this produces an 
elongation ε22 = σ 

E 
22

2 
(σ22) but also lateral contractions 

ε11 = −ν21ε22, ε33 = −ν23ε22 

σ11 σ22
ε11 = − ν21

E1 E2 
σ11 σ22

ε22 = −ν12 + 
E1 E2 

σ11 σ22
ε33 = −ν13 − ν23

E1 E2 

σ11

σ22

σ11

σ22
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Orthotropic linear elastic Hooke’s law: Orthogonal composites 

We now superimpose a uniaxial stress σ33. Similarly, this produces an 
elongation ε33 = σ 

E 
33

3 
(σ33) but also lateral contractions 

ε11 = −ν31ε33, ε22 = −ν32ε33 

σ11 σ22 σ33
ε11 = − ν21 − ν31

E1 E2 E3 
σ11 σ22 σ33

ε22 = −ν12 + − ν32
E1 E2 E3 
σ11 σ22 σ33

ε33 = −ν13 − ν23 + 
E1 E2 E3 

σ11

σ22

σ33

σ11

σ22

σ33

Reciprocity relations: As we discussed, the 1st law requires the relations above 
to be symmetric, e.g. 

ν21 ν12 ν31 ν13 ν32 ν23 

E2 
= 

E1 
, 
E3 

= 
E1 
, 
E3 

= 
E2 
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Orthotropic linear elastic Hooke’s law: Orthogonal composites 

The shear response is also different in the three different orthogonal planes, as 
expected: 

σ23 σ31 σ12
2ε23 = , 2ε31 = , 2ε12 = 

G23 G31 G12 

Hooke’s law for orthotropic materials in matrix form 

⎡ ⎤⎤⎡ ⎤⎡1 − ν12 − ν13 0 0 0
E1 E1ε11 σ11E1⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎦ 

− ν21 1 − ν23 0 0 0
E2 E2 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

ε22 

ε33 

2ε23 

2ε13 

σ22 

σ33 

σ23 

σ13 

E2 

− ν31 − ν32 1 0 0 0
E3 E3 E3 (16)= 
0 0 0 1 0 0

G23 

0 0 0 0 1 0
G31 

2ε12 0 0 0 0 0 1 σ12 
G12 

Remarks: 

When the loading and the material directions coincide, there is no 
coupling between shear and normal stresses and strains, and the shear 
response remains diagonal (i.e. no cross coupling among different shear 
stress and strain components). 

31



Orthotropic linear elastic Hooke’s Law: Orthogonal composites 

Summary of Constitutive equations for orthotropic materials: 

Hooke’s law for orthotropic materials 

σ11 σ22 σ33
ε11 = − ν21 − ν31

E1 E2 E3 
(17) 

σ11 σ22 σ33
ε22 = −ν12 + − ν32

E1 E2 E3 
(18) 

σ11 σ22 σ33
ε33 = −ν13 − ν23 + 

E1 E2 E3 
(19) 

σ23
2ε23 = 

G23 
(20) 

σ31
2ε31 = 

G31 
(21) 

σ12
2ε12 = 

G12 
(22) 
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Orthotropic linear elastic Hooke’s Law: Orthogonal composites 

Summary of Constitutive equations for orthotropic materials: 

Hooke’s law for orthotropic materials 

1 
ε11 = (σ11 − ν12σ22 − ν13σ33) (23)

E1 

1 
ε22 = (σ22 − ν21σ11 − ν23σ33) (24)

E2 

1 
ε33 = (σ33 − ν31σ11 − ν32σ22) (25)

E3 
σ23

2ε23 = (26)
G23 
σ31

2ε31 = (27)
G31 
σ12

2ε12 = (28)
G12 
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