16.001 Unified Engineering Materials and Structures

Summary of Equations of Elasticity

```
Reading assignments: CDL 5.6
```

Instructors: Raúl Radovitzky, Zachary Cordero
Teaching Assistants: Grégoire Chomette, Michelle Xu, and Daniel Pickard

Massachusetts Institute of Technology
Department of Aeronautics \& Astronautics

Outline

(1) Summary of equations of Elasticity

Schematic of generic problem in linear elasticity

Three great principles in differential form

Equilibrium

$$
\begin{equation*}
\sigma_{j i, j}+f_{i}=0 \text { in } \mathrm{B} \tag{1}
\end{equation*}
$$

Schematic of generic problem in linear elasticity

Three great principles in differential form

(2)

Schematic of generic problem in linear elasticity

Three great principles in differential form

Equilibrium

$$
\begin{equation*}
\sigma_{j i, j}+f_{i}=0 \text { in } \mathrm{B} \tag{1}
\end{equation*}
$$

Compatibility

$$
\begin{equation*}
\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \text { in } \mathrm{B} \tag{2}
\end{equation*}
$$

Stress-strain relations

$$
\begin{align*}
& \sigma_{i j}=C_{i j k l} \varepsilon_{k l} \text { in } \mathrm{B} \tag{3}\\
& \varepsilon_{i j}=S_{i j k l} \sigma_{k l} \text { in } \mathrm{B} \tag{4}
\end{align*}
$$

Schematic of generic problem in linear elasticity

Three great principles in differential form

Equilibrium

$$
\begin{equation*}
\sigma_{j i, j}+f_{i}=0 \text { in } \mathrm{B} \tag{1}
\end{equation*}
$$

Compatibility

$$
\begin{equation*}
\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \text { in } \mathrm{B} \tag{2}
\end{equation*}
$$

Stress-strain relations

$$
\begin{align*}
& \sigma_{i j}=C_{i j k l} \varepsilon_{k l} \text { in } \mathrm{B} \tag{3}\\
& \varepsilon_{i j}=S_{i j k l} \sigma_{k l} \text { in } \mathrm{B} \tag{4}
\end{align*}
$$

Schematic of generic problem in linear elasticity

Equation, unknown count?

Three great principles in differential form

Equilibrium

$$
\begin{equation*}
\sigma_{j i, j}+f_{i}=0 \text { in } \mathrm{B} \tag{1}
\end{equation*}
$$

Compatibility

$$
\begin{equation*}
\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \text { in } \mathrm{B} \tag{2}
\end{equation*}
$$

Stress-strain relations

$$
\begin{align*}
& \sigma_{i j}=C_{i j k l} \varepsilon_{k l} \text { in } \mathrm{B} \tag{3}\\
& \varepsilon_{i j}=S_{i j k l} \sigma_{k l} \text { in } \mathrm{B} \tag{4}
\end{align*}
$$

Schematic of generic problem in linear elasticity

Equation, unknown count?

- Equilibrium: 3 equations, 6 unknowns

Three great principles in differential form

Equilibrium

$$
\begin{equation*}
\sigma_{j i, j}+f_{i}=0 \text { in } \mathrm{B} \tag{1}
\end{equation*}
$$

Compatibility

$$
\begin{equation*}
\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \text { in } \mathrm{B} \tag{2}
\end{equation*}
$$

Stress-strain relations

$$
\begin{align*}
& \sigma_{i j}=C_{i j k l} \varepsilon_{k l} \text { in } \mathrm{B} \tag{3}\\
& \varepsilon_{i j}=S_{i j k l} \sigma_{k l} \text { in } \mathrm{B} \tag{4}
\end{align*}
$$

Schematic of generic problem in linear elasticity

Equation, unknown count?

- Equilibrium: 3 equations, 6 unknowns
- Compatibility: 6 equations, 9 unknowns

Three great principles in differential form

Equilibrium

$$
\begin{equation*}
\sigma_{j i, j}+f_{i}=0 \text { in } \mathrm{B} \tag{1}
\end{equation*}
$$

Compatibility

$$
\begin{equation*}
\varepsilon_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \text { in } \mathrm{B} \tag{2}
\end{equation*}
$$

Stress-strain relations

$$
\begin{align*}
& \sigma_{i j}=C_{i j k l} \varepsilon_{k l} \text { in } \mathrm{B} \tag{3}\\
& \varepsilon_{i j}=S_{i j k l} \sigma_{k l} \text { in } \mathrm{B} \tag{4}
\end{align*}
$$

Schematic of generic problem in linear elasticity

Equation, unknown count?

- Equilibrium: 3 equations, 6 unknowns
- Compatibility: 6 equations, 9 unknowns
- Constitutive: 6 equations, 0 unknowns

Summary of equations of Elasticity: Stress-strain relations continued

For a linear isotropic elastic material:

$$
\varepsilon_{i j}=\frac{1}{E}\left[(1+\nu) \sigma_{i j}-\nu \sigma_{k k} \delta_{i j}\right]
$$

Summary of equations of Elasticity: Stress-strain relations continued

For a linear isotropic elastic material: -

$$
\varepsilon_{i j}=\frac{1}{E}\left[(1+\nu) \sigma_{i j}-\nu \sigma_{k k} \delta_{i j}\right]
$$

$$
\begin{gathered}
\varepsilon_{11}=\frac{1}{E}\left[(1+\nu) \sigma_{11}-\nu\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right) \delta_{11}\right] \\
=\frac{1}{E}\left[\sigma_{11}-\nu\left(\sigma_{22}+\sigma_{33}\right)\right]
\end{gathered}
$$

Summary of equations of Elasticity: Stress-strain relations continued

For a linear isotropic elastic material:
-

$$
\varepsilon_{i j}=\frac{1}{E}\left[(1+\nu) \sigma_{i j}-\nu \sigma_{k k} \delta_{i j}\right]
$$

$$
\begin{gathered}
\varepsilon_{11}=\frac{1}{E}\left[(1+\nu) \sigma_{11}-\nu\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right) \delta_{11}\right] \\
=\frac{1}{E}\left[\sigma_{11}-\nu\left(\sigma_{22}+\sigma_{33}\right)\right]
\end{gathered}
$$

- similarly for $\varepsilon_{22}, \varepsilon_{33}$

Summary of equations of Elasticity: Stress-strain relations continued

For a linear isotropic elastic material:
-

$$
\varepsilon_{i j}=\frac{1}{E}\left[(1+\nu) \sigma_{i j}-\nu \sigma_{k k} \delta_{i j}\right]
$$

$$
\begin{gathered}
\varepsilon_{11}=\frac{1}{E}\left[(1+\nu) \sigma_{11}-\nu\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right) \delta_{11}\right] \\
=\frac{1}{E}\left[\sigma_{11}-\nu\left(\sigma_{22}+\sigma_{33}\right)\right]
\end{gathered}
$$

- similarly for $\varepsilon_{22}, \varepsilon_{33}$

$$
\begin{gathered}
\varepsilon_{23}=\frac{1}{E}\left[(1+\nu) \sigma_{23}-\nu \sigma_{k k} \delta_{23}\right] \\
=\frac{1+\nu}{E} \sigma_{23}
\end{gathered}
$$

Summary of equations of Elasticity: Stress-strain relations continued

For a linear isotropic elastic material:
-

$$
\varepsilon_{i j}=\frac{1}{E}\left[(1+\nu) \sigma_{i j}-\nu \sigma_{k k} \delta_{i j}\right]
$$

$$
\begin{gathered}
\varepsilon_{11}=\frac{1}{E}\left[(1+\nu) \sigma_{11}-\nu\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right) \delta_{11}\right] \\
=\frac{1}{E}\left[\sigma_{11}-\nu\left(\sigma_{22}+\sigma_{33}\right)\right]
\end{gathered}
$$

- similarly for $\varepsilon_{22}, \varepsilon_{33}$

$$
\begin{gathered}
\varepsilon_{23}=\frac{1}{E}\left[(1+\nu) \sigma_{23}-\nu \sigma_{k k} \delta_{23}\right] \\
=\frac{1+\nu}{E} \sigma_{23}
\end{gathered}
$$

- similarly for $\varepsilon_{31}, \varepsilon_{12}$

Summary of equations of Elasticity

Stress-strain relations for linear elastic isotropic materials

$$
\begin{aligned}
& \varepsilon_{11}=\frac{1}{E}\left[\sigma_{11}-\nu\left(\sigma_{22}+\sigma_{33}\right)\right] \\
& \varepsilon_{22}=\frac{1}{E}\left[\sigma_{22}-\nu\left(\sigma_{33}+\sigma_{11}\right)\right] \\
& \varepsilon_{33}=\frac{1}{E}\left[\sigma_{33}-\nu\left(\sigma_{11}+\sigma_{22}\right)\right] \\
& 2 \varepsilon_{23}=\frac{1}{G} \sigma_{23} \\
& 2 \varepsilon_{31}=\frac{1}{G} \sigma_{31} \\
& 2 \varepsilon_{12}=\frac{1}{G} \sigma_{12}
\end{aligned}
$$

Schematic of generic problem in linear elasticity

Equilibrium at the boundary: Traction or natural boundary conditions

For tractions $\overline{\mathrm{t}}$ imposed on the portion of the surface of the body $\partial \mathrm{B}_{t}$:

$$
\begin{equation*}
n_{i} \sigma_{i j}=t_{j}=\bar{t}_{j} \text { on } \partial \mathrm{B}_{t} \tag{5}
\end{equation*}
$$

Schematic of generic problem in linear elasticity

Summary of equations of Elasticity: Boundary conditions

Equilibrium at the boundary: Traction

 or natural boundary conditionsFor tractions $\overline{\mathrm{t}}$ imposed on the portion of the surface of the body $\partial \mathrm{B}_{t}$:

$$
\begin{equation*}
n_{i} \sigma_{i j}=t_{j}=\bar{t}_{j} \text { on } \partial \mathrm{B}_{t} \tag{5}
\end{equation*}
$$

Compatibility at the boundary:
 Displacement or essential boundary conditions

For displacements \bar{u} imposed on the portion of the surface of the body ∂B_{u}, this includes the supports for which we have $\overline{\mathrm{u}}=0$

$$
\begin{equation*}
u_{i}=\bar{u}_{i} \tag{6}
\end{equation*}
$$

Schematic of generic problem in linear elasticity

Remark

We require $\partial B_{u} \cap \partial \mathrm{~B}_{t}=\emptyset$, since we cannot prescribe both traction and displacement at the same point!

Summary of equations of Elasticity

We observe that the general elasticity problem contains 15 unknown fields: displacements (3), strains (6) and stresses (6); and 15 governing equations: equilibrium (3), pointwise compatibility (6), and constitutive (6), in addition to suitable displacement and traction boundary conditions. One can prove existence and uniqueness of the solution (the fields: $\left.u_{i}\left(x_{j}\right), \varepsilon_{i j}\left(x_{k}\right), \sigma_{i j}\left(x_{k}\right)\right)$ under some conditions on the elastic tensor (convexity of the strain energy function or the positive definiteness of the elastic tensor).
In the isotropic case, it can be shown that the system of equations has a solution (existence) which is unique (uniqueness) providing that the bulk and shear moduli are positive:

$$
K=\frac{E}{3(1-2 \nu)}>0, G=\frac{E}{2(1+\nu)}>0
$$

which poses the following restrictions on the Poisson ratio:

$$
-1<\nu<0.5
$$

Summary of equations of Elasticity

Exercise: write all 15 equations in expanded form

MIT OpenCourseWare
https://ocw.mit.edu/
16.001 Unified Engineering: Materials and Structures

Fall 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

