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Instructors: Raúl Radovitzky, Zachary Cordero 
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1 Structural theories for slender elements: Rod Theory 
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Axial loading of slender structural elements I 

L

p1(x1)

P1

e1

We will consider the structural response of slender structural elements subjected 
to axial loads only as shown in the figure, i.e. there are no transverse loadings. 
The only external loads possible in this case are either concentrated forces such 
as the load P1, or distributed forces per unit length p1(x1). 

3/13 



Axial loading of slender structural elements II 

As we will do in any other structural theory, we will adopt a kinematic assump-
tion, i.e. a restriction to the general form of the unknown displacement field 
u(x) = ui (xj )ei 

Kinematic assumption 

u1(x1, x2, x3) = ū  1(x1), cross sections remain planar (1) 

u2(x1, x2, x3) = 0, no transverse deflections, cross sections deform rigidly (2) 

u3(x1, x2, x3) = 0, no transverse deflections, cross sections deform rigidly (3) 

We have simplified the description of the deformation to a single unknown func-
tion with a single independent variable ū  1(x1). 
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Axial loading of slender structural elements III 

Strain field: The strain field then follows from the kinematic assumption from� � 
1 ∂ui ∂ujthe strain-displacement relations we discussed last term εij = + :
2 ∂xj ∂xi 

Strain field 

0�11(x1, x2, x3) = ū  1(x1) 

and all the other strain components are zero. The assumption of allowing only 
rigid motions of the cross section implies that there cannot be any in-plane 
strains. This creates a state of uni-axial strain. 

Constitutive law: We will assume a linear-elastic isotropic material and that the 
transverse stresses σ22 = σ33 = 0. By Hooke’s law, the axial stress σ11 is given 
by: 

σ11(x1, x2, x3) = E �11(x1, x2, x3) 

Replacing the strain field for this case: 

σ11(x1, x2, x3) = Eū  1 
0 (x1) (4) 
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Axial loading of slender structural elements IV 

In other words, we are assuming a state of uni-axial stress. 
Remark: There is an intrinsic inconsistency in these assumptions, due to Poisson 
effect, we can either have σ22 = σ33 = 0 OR ε22 = �33 = 0, but not both. 
However, for most practical situations where Rod theory applies, this issue can 
be ignored. 
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Axial loading of slender structural elements V 

Definition of stress resultant in the cross section: Since the stresses are uniform 
in the cross section, it is convenient to define their resultant effect as the total 
normal force they transmit at each cross section x1 by simply integrating them 
in the area: 

Stress resultant: Normal force 

The axial or normal force is defined by the 
expression: Z 

(5)N1(x1) = σ11(x1, x2, x3)dA 
A 

e

e1
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Axial loading of slender structural elements VI 

Constitutive law for the cross section: We can obtain a constitutive relation 
between the primary kinematic unknown ū1(x1) and the primary kinetic (force) 
unknown N1(x1) by combining equations (5) and (4): Z Z 

N1(x1) = Eū  1 
0 (x1)dA = EdA ū  1 

0 (x1) 
A(x1) A(x1)| {z } 

S(x1) 

We will define: Z 
S = E (x1, x2, x3)dA (6) 

A(x1) 

as the axial stiffness of the beam, where we allow the Young’s modulus to vary 
freely both in the cross section and along the axis of the beam, and we allow for 
non-uniform cross section geometries. In the case that the section is homoge-
neous in the cross section (E = E (x1,�x2,�x3)), we obtain: S(x1) = E (x1)A(x1). 
Further, if the section is uniform along x1 and the material is homogeneous 
(E = const), we obtain: S = EA. 
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Axial loading of slender structural elements VII 

We can then write a constitutive relation between the axial force and the appro-
priate measure of strain for the beam: 

Constitutive law for the cross section 

N1(x1) = EA(x1)ū1 
0 (x1) (7) 

This very important expression defines a relation between the relevant kinetic 
variable for this problem N1(x1) and the kinematic variable ū1(x1). We see that 
it is a linear relation and that the proportionality constant EA(x1) plays the role 
of a stiffness. Further, we see that this stiffness has a contribution from the 
material (E ) and another contribution from the geometry A. We will find a 
similar situation in other structural theories (e.g. beams bending, torsion). 
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Axial loading of slender structural elements VIII 

Differential equation of equilibrium: In structural theories, we seek to impose 
equilibrium in terms of resultant forces (rather than at the material point as 
we did when we derived the equations of stress equilibrium). To this end, we 
consider the free body diagram of a slice of the beam as shown in the Figure. 
At x1 the axial force is N1(x1), at x1 + dx1, N1(x1 + dx1) = N1(x1) + N 0(x1)dx1. 
The distributed force per unit length p1(x1) produces a force in the positive x1 

direction equal to p1(x1)dx1. 

−N1(x1)+ p1(x1)dx1 + N1(x1)+ N1 
0 (x1)dx1 = 0 

which implies: 

dN1 
+ p1 = 0 (8)

dx1 

Equilibrium of forces in the e1 direction requires: 

dx1

N(x1) + N
′

(x1)dx1N(x1) p1(x1)dx1

e1
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Axial loading of slender structural elements IX 

Putting it altogether: Governing equation: combining Equations (7) and (8). 

Governing equation 

d (EA(x1)ū1(x1)) + p1 = 0 (9)
dx1 

What principles does it enforce? compatibility, the constitutive law and equilib-
rium. 
Boundary conditions: 

How many boundary conditions are required? It’s a second order 
differential equation, thus it requires two boundary conditions 
What type of physical boundary conditions make sense for this problem 
and how are they expressed mathematically? The bar can be: 

fixed, this implies that the displacement is specified to be zero 

0 

ū1 = 0 

free (unloaded), which implies that: 

N1 
00 = EAū1 = 0, ⇒ ū1 = 0 
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Axial loading of slender structural elements X 

subjected to a concentrated load P1, which implies that: 

N1 = EAū1 
0 = P1 
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Analysis of rods subject to combined temperature and mechanical loads 

Revisit the Constitutive Law for uniaxial stress, allowing for thermal expansion 
effects: 

σ11
ε11 = + αΔθ, inverting: σ11 = E (ε11 − αΔθ)

E 

Using assumptions from Rod Theory: � 0 � 
σ11(x1) = E (ε11(x1) − αΔθ(x1)) = E ū  1(x1) − αΔθ 

Replacing in the definition of the axial force: 

Stiffness relation for rods subject to mechanical loads and thermal changes 

Z Z � � 
N(x1) = σ11(x1)dA = E ū  1 

0 (x1) − αΔθ dA 
A(x1) A(x1) � � 
N(x1) = EA(x1) ū  1 

0 (x1) − αΔθ(x1) 

Combined with the equilibrium equation N 0(x1) + p1(x1) = 0, and the usual 
boundary conditions, we can solve for ū  1 

0 (x1), N(x1). 
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