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Teaching Assistants: Grégoire Chomette, Michelle Xu, and Daniel Pickard 

Massachusetts Institute of Technology
Department of Aeronautics & Astronautics

1/29



Outline

1 Transverse loading of slender structural elements: Beam Theory
Introduction
Derivation of the governing equations for beam theory

2/29



Transverse loading of slender structural elements: Beam Theory I
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Beams have the defining characteristic that they can resist loads acting trans-
versely to its axis by bending or deflecting orthogonally to their axis. This bending
deformation causes internal axial and shear stresses which can be described by
equipolent stress resultant moments and shearing forces.
Our goal is to compute the internal resultant forces and moments, stresses and
deformations of a beam subjected to general loading, as shown in the figure.
This includes, applied concentrated loads and moments, and distributed forces.
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Transverse loading of slender structural elements: Beam Theory I

Kinematic assumption:
Beam theory is founded on the following two key assumptions known as the
Euler-Bernoulli assumptions:

Cross sections of the beam do not
deform in a significant manner
under the application of transverse
or axial loads and can be assumed
as rigid

During deformation, the cross
sections of the beam are assumed
to remain planar and normal to
the deformed axis of the beam.

This implies that locally lines
perpendicular to the axis of the
beam are the radii of a circle of
radius equal to the local radius of
curvature ρ of the curve described
by ū2(x1) (which is not necessarily
a circle)

x1

x2
ū2(x1)
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Transverse loading of slender structural elements: Beam Theory II

The red segment in the figure is at a
distance x2 from the beam fiber which does
not deform (neutral axis). It’s length is
initially dx1. In the deformed beam, the
neutral axis still has a length ds = dx1
which is now also ρdθ. The new length of
the red segment is ds ′ = (ρ− x2)dθ. The
change in length is
ds ′ − ds = (�ρ− x2 − �ρ)dθ. And the
longitudinal strain is then:

ε11 =
−x2
ρ

x2

dθ

ρ

x2

From Calculus, the radius of curvature of a function y(x) is given by

ρ(y(x)) = (1+y′(x)2)
3
2

y′′(x) ⇒

ε11 =
−x2ū′′2 (x1)

(1 + ū′2(x1)2)
3
2

∼ −x2ū′′2 (x1)
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Transverse loading of slender structural elements: Beam Theory III

e2

e3

e1
θ3(x1)

Transverse deflections:

u2(x1, x2, x3) = ū2(x1)

The kinematic restrictions imposed by the second Euler-Bernoulli assumption
results in the following form of the u1 displacement component:

u1(x1, x2, x3) = −x2θ3(x1), θ3 =
dū2
dx1
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Transverse loading of slender structural elements: Beam Theory IV

Summarizing:

Kinematic assumption

u1(x1, x2, x3) = −x2
dū2
dx1

(1)

u2(x1, x2, x3) = ū2(x1) (2)
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Transverse loading of slender structural elements: Beam Theory V

Strain field: Using the kinematic assumptions of Euler-Bernoulli beam theory we
can derive the general form of the strain field:

ε11 =
∂u1
∂x1

= −x2ū′′2 (x1) (3)

ε22 =
∂u2
∂x2

=
dū2(x1)

dx2
= 0 (4)

2ε12 =
∂u1
∂x2

+
∂u2
∂x1

=
d

dx2

(
−x2ū′2(x1)

)
+ ū′2(x1) = − dx2

dx2︸︷︷︸
1

ū′2(x1) + ū′2(x1) = 0,

(5)

These expressions give us a deeper insight on the nature of the strains due to
bending resulting from the Euler-Bernoulli assumption on the deformation of
beams:

The expression for ε11 tells us that the axial fibers of the beam stretch and
contract proportionally to the distance to the plane x1 − x3, where we have
assumed that the fibers have no stretch. We will call this the neutral axis.
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Transverse loading of slender structural elements: Beam Theory VI

The constant of proportionality is the second derivative of the function
describing the deflections of the axis of the beam. This can be seen as a
linearized version of the local value of the curvature.

There are no shear strains!!!! This is a direct consequence of assuming
that the cross-section remains normal to the deformed axis of the beam.

There are no strains in the plane. This is a direct consequence of assuming
that the cross section is rigid.

One of the main conclusions of the Euler-Bernoulli assumptions is that in this
particular beam theory the primary unknown variable is the deflection function
ū2(x1) which is only a function of x1. The full displacement, strain and therefore
stress fields do depend on the other independent variables but in a prescribed way
that follows directly from the kinematic assumptions and from the equations of
elasticity. The purpose of formulating a beam theory is to obtain a description of
the problem expressed entirely on variables that depend on a single independent
spatial variable x1 which is the coordinate along the axis of the beam.
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Transverse loading of slender structural elements: Beam Theory VII

Constitutive law for the cross section We will assume a linear-elastic isotropic
material and that the transverse stresses σ22, σ33 ∼ 0. By Hooke’s law, the axial
stress σ11 is given by:

σ11(x1, x2, x3) = Eε11(x1, x2) = −Ex2ū′′2 (x1) (6)

In other words, we are assuming a state of uni-axial stress.
This exposes an inconsistency in Euler-Bernoulli beam theory: we are assuming
the kinematics to be uni-axial strain, and the kinetics to be uni-axial stress. In
other words one can either have:

ε22 = ε33 = 0

(Euler-Bernoulli hypothesis) or

σ22 = σ33 = 0

These two cannot co-exist except when the Poisson ratio is zero. However, the
inconsistency in general has a small effect in most problems of practical interest.
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Transverse loading of slender structural elements: Beam Theory VIII

The theory is developed assuming that we can ignore both these strains and
stresses.
Assuming E is constant in the cross section, it can be seen from Equation (6)
that the σ11 stress distribution through the thickness is linear in x2.
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Transverse loading of slender structural elements: Beam Theory IX

Stress resultants: are equivalent force
systems that represent the integral
effect of the internal stresses acting on
the cross section. Thus, they eliminate
the need to carry over the dependency
of the stresses on the spatial
coordinates of the cross section x2, x3. dx1

N
S

M

N

S

M

e1

e2

bcb
e3

σ12

σ11

σ11

σ12

We’ve already discussed the axial or normal force:

N(x1) =

∫
A

σ11(x1, x2, x3)dA (7)

The bending moment is defined by the expression:

M(x1) = −
∫
A

x2σ11(x1, x2)dA (8)
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Transverse loading of slender structural elements: Beam Theory X

The negative sign is needed to generate a positive bending moment with respect
to axis e3, as shown in the figure.
The transverse shear force is defined by the expression:

S(x1) =

∫
A

σ12(x1, x2)dA (9)
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Transverse loading of slender structural elements: Beam Theory XI

Derivation of the moment-curvature relation for beams
Specialize the definition of the M stress resultant (8)

M(x1) = −
∫
A(x1)

x2σ11(x1, x2)dA

to the case under consideration by using the stress distribution resulting from
the Euler-Bernoulli hypothesis, σ11(x1, x2, x3) = −Ex2ū′′2 (x1) to obtain a relation
between the bending moment and the local curvature ū′′2 (x1):

M(x1) =�−
∫
A(x1)

x2��
�(−1)Ex2ū

′′
2 (x1)dA =

[∫
A(x1)

Ex2
2dA

]
︸ ︷︷ ︸

H(x1)

ū′′2 (x1)

We can see that we obtain a linear relation between the bending moment and
the local curvature ( moment-curvature relationship):

M3(x1) = H(x1)ū′′2 (x1) (10)
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Transverse loading of slender structural elements: Beam Theory XII

The constant of proportionality will be referred to as the bending stiffness (also
sometimes known as the flexural rigidity):

H(x1) =

∫
A(x1)

Ex2
2dA (11)

In the case of a homogeneous cross section of Young’s modulus E(x1):

H(x1) = E(x1)

∫
A(x1)

x2
2dA︸ ︷︷ ︸

I

(12)

we obtain:

M = EI ū′′2 (x1) (13)
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Transverse loading of slender structural elements: Beam Theory XIII

The quantity I in Equation (12) is defined as the Moment of inertia of the area
of the cross section:

Definition

Moment of inertia of the cross section

I =

∫
A(x1)

x2
2dA (14)

A(x1)

x3

x2

b x1

dA
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Transverse loading of slender structural elements: Beam Theory XIV

Example

Moment of inertia of a rectangular beam of base b and height h

I =

∫
A(x1)

x2
2dA =

∫ h
2

− h
2

∫ b
2

− b
2

x2
2dx3dx2 =

∫ h
2

− h
2

x2
2

(∫ b
2

− b
2

dx3

)
︸ ︷︷ ︸

b

dx2 = b
x3
2

3
|
h
2

− h
2

= I =
bh3

12
A(x1)

b

hx3

x2

b x1

dA
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Transverse loading of slender structural elements: Beam Theory XV

An important consequence of the moment-curvature relation (13) is that the
stress distribution in the beam can be expressed in terms of the internal moment.
To see this, solve for u′′(x1) in this equation and replace in (6), and obtain:

σ11(x1, x2) = −�E
M(x1)

�EI︸ ︷︷ ︸
u′′(x1)

x2 (15)

σ11(x1, x2) = −M(x1)

I
x2 (16)

Extremum (tensile and compressive) stresses are found at the top and bottom
edges of the beam and in the cross section x1 where the bending moment is
maximum.

18/29



Transverse loading of slender structural elements: Beam Theory XVI

Example

Stresses in a rectangular beam: In this case, I = bh3

12
, then:

σ11(x1, x2) = −12M(x1)

bh3
x2

σmin,max
11 (x1) = −�

�>
6

12M(x1)

bh��
2

3

±�h

���
1

2

= ∓6M(x1)

bh2
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Transverse loading of slender structural elements: Beam Theory XVII

Differential equations of Equilibrium for beams
Principle of equilibrium We will
formulate the internal equilibrium of
beams by analyzing the free body
diagram (FBD) of a differential element
of the beam along the beam axis dx1.
The forces and moments acting on the
beam element are: the internal
resultant shear force distribution S(x1),
the internal bending moment
distribution M(x1), and the distributed
force per unit length p(x1).

dx1

S(x1)

M(x1)

S(x1) +
dS

dx1
dx1

M(x1) +
dM

dx1
dx1

e1

e2

p(x1)dx1

bcO

Equilibrium of forces in the e2 direction gives: ��
��−S(x1) + p2(x1)dx1 +��

�S(x1) +

S ′(x1)dx1 = 0,⇒ S ′(x1) + p2(x1) = 0

Equilibrium of moments about point O gives:���
�−M(x1)+S(x1)dx1−���

���:
h.o.t.

p2(x1)dx1
dx1
2

+

���M(x1) + M ′(x1)dx1 = 0,⇒ M ′(x1) + S(x1) = 0
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Transverse loading of slender structural elements: Beam Theory XVIII

These two equations can be combined by differentiating the second equation:(
M ′(x1) + S(x1)

)′
= M ′′(x1) + S ′(x1) = 0, and replacing in the first one:

−M ′′(x1) + p2(x1) = 0

M ′′(x1) = p2(x1)

In summary, equilibrium of beams poses the following restrictions on the distri-
bution of bending moments M(x1) and shear forces S(x1).

Beam equilibrium equations

S ′(x1) + p2(x1) = 0 (17)

M ′(x1) + S(x1) = 0 (18)

M ′′(x1) = p2(x1) (19)
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Transverse loading of slender structural elements: Beam Theory XIX

Governing equation for beam deflections
By combining Equations (13) with the moment equilibrium equation (19).

(
EI (x1)ū′′2 (x1)

)′′
= p(x1) (20)
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Transverse loading of slender structural elements: Beam Theory XX

Boundary conditions for the equilibrium equation: As any fourth-order ODE, the
governing equation for beams (20) requires four boundary conditions (typically
at the beam ends). From ODE theory, we know that these BCs can be given in
terms of the unknown function ū2(x1) or any of its derivatives up to the third
order (one order less than the ODE). The following table describes the types of
boundary conditions that we can find in beams:

Type of BC Value constrained Can’t impose at the same time
Deflection ū2(x∗) Shear S(x∗) = −EI ū′′′2
Rotation ū′2(x∗) Moment M(x∗) = EI ū′′2
Moment EI ū′′2 (x∗) Rotation ū′2

Shear −EI ū′′′2 (x∗) Deflection ū2
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Transverse loading of slender structural elements: Beam Theory XXI

The symbols we use to represent practical types of supports are as we’ve discussed
before:

Name Symbol Constrained dof Unknown

Fixed, built-in
or clamp sup-
port

Deflection ū2
and rotation ū′2

Shear S , Moment M

Roller Deflection ū2,
Moment M

Shear S (Force Reac-
tion), u′2 (rotation)

Clamp on a
roller

Rotation ū′2,
Shear S

Moment M, deflection
ū2

Free end Moment M,
Shear S

Deflection ū2, rotation
ū′2
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Transverse loading of slender structural elements: Beam Theory XXII

Shear stresses in beams subject to bending: The equilibrium equations tell us
that bending moments cannot vary along the beams unless there are non-zero
internal shear forces (M ′ + S = 0), and that distributed forces will produce
variations in the internal shear force distribution along the beam (S ′ + p2 = 0).
In other words, internal shear forces S , not only exist, but they also play an
integral role in the theory. However, our derivation of the theory showed that
one of the consequences of the kinematic Euler-Bernoulli hypothesis is that there
are no distortions and therefore no shear stresses in this theory.
Here, we will show that stress equilibrium not only demands the presence of shear
stresses, it also gives the mathematical framework to compute their distribution.
Start from the first equation of equilibrium for stresses (no body forces):

∂σ11

∂x1
+
∂σ12

∂x2
= 0

25/29



Transverse loading of slender structural elements: Beam Theory XXIII

and replace the known form of σ11(x1, x2) = −M(x1)
I

x2, equation (16) from beam
theory from above:

∂

∂x1

(
−M(x1)

I
x2

)
+
∂σ12

∂x2
= 0

∂σ12

∂x2
=

−S(x1)︷ ︸︸ ︷
M ′(x1)

I
x2

σ12 = −S(x1)

I

x2
2

2
+ C
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Transverse loading of slender structural elements: Beam Theory XXIV

The boundary condition is found at the top and bottom surfaces of the beam,
where the shear stress is zero. In the particular case of a beam of rectangular
cross section, this corresponds to x2 = ± h

2
, giving:

C =
S(x1)

I

(
h
2

)2
2

σ12(x1, x2) =
S(x1)

2I

[(
h

2

)2

− x2
2

]

It is found that shear stresses have a parabolic distribution in the cross section
with the maximum at x2 = 0 and decreasing to zero on both top and bottom
surfaces.
To gain some perspective on the importance of shear vs normal stresses in beam
bending, let’s compare the following example.
Consider the simple situation of a rectangular cantilever beam subject to a con-
centrated load P on the free end. The shear distribution is constant S(x1) = P,

27/29



Transverse loading of slender structural elements: Beam Theory XXV

whereas the moment distribution is M(x1) = P(L− x1). The maximum bending
stresses then occur at x1 = 0 and their absolute value is:

max(|σ11|) =

M(0)︷︸︸︷
PL

I

h

2

The maximum shear stresses happen at x2 = 0 (any x1):

max(σ12) =

S(x1)︷︸︸︷
P

2I

(
h

2

)2

Their ratio is:

max(σ12)

max(|σ11|)
=
�P
2�I

(
h
2

)�2
�PL

�I �
�h2

=
1

4

h

L
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Transverse loading of slender structural elements: Beam Theory XXVI

For other beam configurations, the factor 1/4 will change, but the overall scaling
relation h/L persists. In many practical situations, beams are very long and
slender, the factor h/L is very small, and so are the shear stresses compared to
the dominant longitudinal stresses that support the bending moments. However,
for short beams, shear stresses could be significant.
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