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General considerations I:

We will consider the structural response of slender structural elements subjected 
to torsional moments only as shown in the figure. The only external loads 
considered are either concentrated torques such as T , or distributed torques per 
unit length t3(x3). We will also limit the discussion to circular bars with a solid 
or hollow cross section. 
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Kinematic assumptions I:

Following the observed deformation (Mathematica demonstration shown in 
class), we will develop a structural theory of torsion based on the following 
kinematic assumptions: 

Planar cross sections x3 = constant rotate as a rigid body about the axis of 
the cylindrical shaft. 
The angle of twist (rotation) of the cross sections will be a function of x3 

and denoted by φ(x3). 
No other deformation will be allowed (e.g. axial stretching of the 
longitudinal fibers or warping of the cross section) 
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Kinematic assumptions II: 

As can be seen in the figure and the 
demonstration, the only noticeable deformation 
resulting from these kinematic assumptions is a 
distortion of the square marks on the surface of 
the bar due to the relative rotation between the 
di˙erent sections. This is highlighted in the 
following figure 

We now attempt to describe the deformation 
mathematically. To this end, we focus on the 
motion of an arbitrary point P at a cross section 
located at x3 where the angle of twist is φ(x3), 
whose in-plane undeformed coordinates are 
x1 = r cosβ ,x2 = r sinβ . After the deformation 
(rigid rotation), the point occupies position P 0 of 
coordinates: x1 

0 = r cos(β + φ),x2 
0 = r sin(β + φ) 

The displacement of point P is then (using trig. 
formulae followed by small φ assumption): 5/19 



Kinematic assumptions III: 

⎛ ⎞ 
∼1 ∼φ 
z }| { z}|{ 

u1 = x1 
0 − x1 = r (cos(β + φ) − cosβ) = r ⎝cosβ cosφ −sinβ sinφ −cosβ⎠ 

u2 = x2 
0 − x2 = r (sin(β + φ) − sinβ) = r (sinβ cosφ + cosβ sinφ − sinβ) 

u1 = − r sinβ φ(x3) = −x2φ(x3), u2 = r cosβ φ(x3) = x1φ(x3)
| {z } | {z } 

x2 x1 

From the kinematic assumptions, we conclude that the most general form of the 
displacement field in this theory is: 

(1)u1(x1,x2,x3) = −φ(x3)x2 

(2)u2(x1,x2,x3) = φ(x3)x1 

(3)u3(x1,x2,x3) = 0 
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Kinematic assumptions IV: 

We observe that from the perspective of kinematics, in this theory the 
determination of the full displacement field of the general theory of elasticity is 
reduced to the determination of a single scalar function of a single variable which 
describes the variation of the angle of twist along the axis of the shaft φ(x3). 
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Strains in torsion theory: 

As in other reduced or structural theories, the strains in torsion theory follow 
from the application of the definition of strain components to the assumed 
displacement field, (3): 

∂ u1 ∂ (−φ(x3)x2)
ε11 = = = 0 

∂ x1 ∂ x1 

∂ u2 ∂ (φ(x3)x1)
ε22 = = = 0 

∂ x2 ∂ x2 

∂ u3 ∂ 0 
ε33 = = = 0 

∂ x3 ∂ x3 

1 � ∂ u1 ∂ u2 
� 1 

ε12 = + = (−φ(x3) + φ(x3)) = 02 ∂ x2 ∂ x1 2 

1 � ∂ u1 ∂ u3 
� 1 dφ 

ε13 = + = − 2 x22 ∂ x3 ∂ x1 dx3 

1 � ∂ u2 ∂ u3 
� 1 dφ 

ε23 = + = 2 x12 ∂ x3 ∂ x2 dx3 
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Stress-strain relations in torsion theory: 

We will assume a linear, elastic, isotropic material (Hooke’s law). Absence of 
normal strains: ε11 = ε22 = ε33 = 0, implies absence of normal stresses: 
σ11 = σ22 = σ33 = 0. This follows directly from Hooke’s law. The shear stresses 
in an isotropic elastic model are directly related to the shear strains via the 
unique shear modulus G : 

2 dφ�σ23 = 2Gε23 = Gx1 (6)
�2 dx3 

Note that the only stresses in this theory are shear stresses acting on the plane 

x1

x2

σ32

σ32

σ12 = 2Gε12 = 0 (4) 

σ13 = 2Gε13 = −�
2 

Gx2 
dφ 

2 dx3�
(5) 

of direction x3 (the cross section) and pointing in the direction tangential to the 
plane. Of course, these must be accompanied by shear stresses acting on the 
planes of normals x1 and x2 and pointing in direction x3: σ32 = σ23,σ31 = σ13. 
Furthermore, Equations (5), (6) show that the distribution is linear in the radial 
direction. 
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Stress resultants in torsion theory: Internal torque I: 

As in other structural theories discussed (rod, beam), we are interested in 
defining a resultant kinetic quantity in the cross section that aggregates the 
combined action of the internal stresses. The only existing stresses σ31,σ23 can 
only contribute to resultant shear forces in directions x1,x2 (S1,S2), and a 
moment in direction x3, M3. These resultants are defined by the following 
expressions, see Figure: 

T

b
e1

e2

σ23

σ31

Z 

S1(x3) = σ31(x1,x2,x3)dA 
A 

Z 

S2(x3) = σ23(x1,x2,x3)dA 
A 

Z 

M3(x1) = (x1σ23(x1,x2,x3) − x2σ31(x1,x2,x3))dA 
A 
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Stress resultants in torsion theory: Internal torque II: 

Replacing the expressions for the stresses from Equations (5), (6): 
Z 

S1(x3) = −Gx2φ
0(x3)dA = 0 

A
Z 

S2(x3) = Gx1φ
0(x3)dA = 0 

Z A 
�

Z 
� 

M3(x1) = (x1Gx1φ
0(x3) − x2(−x2Gφ0(x3))dA = G (x1

2 + x2
2)dA φ0(x3) 

A 
�

Z 
� 

A 

= G r 2dA φ0(x3) 

|

A 
{z } 

J= πR 
2

4 
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Stress resultants in torsion theory: Internal torque III: 

And we obtain the internal torque-rate of twist relation for torsion: 

T (x3) = M3(x3) = GJφ0(x3) (7) 

As with other structural theories, we obtain a sti˙ness relation between the 
metric of deformation appropriate to the theory, in this case the rate of twist 
φ0(x3), and the metric of internal forcing, in this case, the internal torque T . 
The factor GJ in this linear relation is the torsional sti˙ness with contributions 
from the material (G), and geometry of the cross section J . As other structural 
sti˙ness relations, Equation (7) encodes the principles of compatibility and 
constitutive relations.
R

J = A 
r 2dA represents the Polar moment of inertia which for circular cross 

sections can be readily found to be J = πR 
2

4 . 
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Equilibrium equation: 

T (x3) T (x3) + T ′(x3)dx3

t(x3)

dx3

Consider the free body diagram (FBD) of an infinitesimal segment of our 
shaft exposing the internal torques. The shaft is allowed to experience an 
externally-applied distributed torque per unit length t(x3). Equilibrium of 
moments in direction x3 gives: 
X 

M3 = 0 : �−�T +�T + T 0(x3)dx3 + t(x3)dx3 = 0 

T 0(x3) + t(x3) = 0 (8) 
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Summary of equations I: 

The governing equations for the torsion of circular shafts are: 

T 0(x3) + t(x3) = 0 (Equilibrium) (9) 

T (x3) = GJφ0(x3) (Compatibility, Constitutive) (10) 

These can be combined into a single di˙erential equation: 

(GJφ0(x3))0(x3) + t(x3) = 0 (11) 

which is the (second-order) di˙erential equation governing the angle of twist 
distribution in torsion theory. 
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Solution approach I: 

As we can see, there are some common elements with other structural theories 
we have seen: 

The equilibrium equation is in this case a first-order ODE on a single 
unknown, the internal torque distribution T (x3). It can be solved 
independently if we know the value of T at some point in our shaft 
(typically one of the ends). In this case, the problem is statically 
determinate. The torque distibution obtained can then be inserted in the 
sti˙ness relation, which, in turn, is a first-order ODE that can be integrated 
to find the distribution of the angle of twist φ(x3), provided we know its 
value at some point of the shaft (typically the other end). 
When the system is statically indeterminate, Equation (11) is used in 
combination with two kinematic boundary conditions to solve for φ(x3). 
This can then be replaced in the sti˙ness relation to obtain T (x3). 
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Solution approach II: 

Computation of shear stresses: The stresses can be recovered from Equations (5) 
and (6) using the sti˙ness relation one more time as follows: 

z }| {
Gφ0(x3),σ13 = −x2 

T
J 

Tx2
σ13 = − J 

(12) 

z }| { Tx1Gφ0(x3), (13)σ23 = x1 σ23 = − J 

The functional form of the stresses, as well as the axial symmetry, suggests a 
more physical expression in cylindrical instead of cartesian coordinates, which 

T
J 

results in shear component in the hoop direction that be stressa = canσ τ3θ 

obtained as an in-plane resultant of the cartesian components as follows: 
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Solution approach III: 

e1

e2

σ32

-σ31

τ

b
T

q 
τ = σ2 

13 + σ2 
23 

qT 
= x1

2 + x2
2 

J 

Tr 
τ = (14)J 
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Limitations I: 

The torsion theory we developed assumes a circular cross section 
This includes the possibility of a hollow geometry (tube), which is very 
useful in practice for structural eÿciency reasons. In this case, the polar 
moment of inertia J can be obtained from the additive decomposition of 
the integral. 

Solid: J = πR 
2

4 

2
R

2
R

0

2
R

i

πR4 

− 
πR4

Tube: J = 0 i 
2 2 

Other cross sections require a more sophisticated analysis (discussed in 
16.20) and usually lead to warping of the cross section in the axial direction. 
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Limitations II: 

For example for a Square cross section, it can be shown that: 
J = 0.141a4 

a

It is also found that open cross sections have very poor torsional sti˙ness 
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