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16.001, M&S - Fall 2020 Homework #1

i Problem M-1.1
Breguet Range Equation

(a) The purpose of this exercise is to estimate the range of the Airbus 340-500 from
the flight data provided in lecture. Based on the charts given (you may also find
it useful to consult the official specifications available on the Airbus web site es-
timate each one of the parameters in the Breguet Range Equation, explaning the
process by which you obtain each parameter. Then, use the Range Equation to
estimate the maximum range. If you don’t find information about the overall
propulsive efficiency and aerodynamic efficiency you can use the following values:
η0 = 0.35, L/D = 17. Compare your estimate with the information available online.

Solution: From the charts for the JFK to Abu Dhabi flight and the information
on the Airbus web site, we can obtain or estimate the following parameters:

L = 380t, D = 23t, ηoverall = 0.35, hf = 42M J/kg, MTOW = 380t,

Wfuel = 180.5t, g = 9.81m/s2, wp = 90kg, np = 270

Wfuel was obtained from the listed maximum fuel capacity of 222.85m3 and the
mass density of jet fuel which is ρfuel = 810kg.m−3. Replacing these in the
Range Equation we obtain:

Rmax = 16414 Kilometers

which is pretty close to the listed range of 16670 Kilometers.

(b) Imagine that the aerodynamic design can be improved such that L/D increases by
3%. How many more passengers could the airplane carry just from the perspective
of maintaining the same maximum range? (Hint: Assume that the weight of each
passenger with luggage is on average 90 kg).

Solution: The max range for the original design is:

R(1)
max =

(
L
D

)(1)
hfη0 ln

(
Wfuel+npwp+Ws

npwp+Ws

)
g

And for the new design:

R(2)
max =

(
L
D

)(2)
hfη0 ln

(
Wfuel+wp(∆n+np)+Ws

wp(∆n+np)+Ws

)
g

Since we are not extending the range, they should be the same and their ratio
equal to 1:

R
(2)
max

R
(1)
max

= 1 = 1.03
ln
(

Wfuel+wp(∆n+np)+Ws

wp(∆n+np)+Ws

)
ln
(

Wfuel+npwp+Ws

npwp+Ws

)
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In this equation the only unknown is ∆n, since all the parameters have been
estimated above, except for Ws, which can be estimated from MTOW,Wp =
nwp,Wfuel by:

Ws = MTOW − npwp −Wfuel = 175.2 t

However, we don’t really need Ws or n, as they disappear once replaced in the
equation above:

1 = 1.03
ln
(

MTOW + ∆n wp

MTOW − Wfuel+ ∆n wp

)
ln
(

MTOW
MTOW − Wfuel

)
Replacing the values above and solving for ∆n, we obtain:

1 = 1.59839 ln

(
∆n(90kg) + 380000.kg

∆n(90kg) + 199500.kg

)
∆n ∼ 90

(c) We would like to perform a sensitivity analysis of several parameters on the maxi-
mum range of the airplane. What would be the relative variation in the maximum
range, ceteris paribus, for the following scenarios?

• A new design using an increased amount of composites in some of the main
structural components would satisfy all the structural requirements while re-
ducing the structure weight by 5%

• An architect reorganizes the space inside the aircraft, which can now carry 12
more passengers (' 5 % more), without adding weight to the structure

• A new generation of engines allows to increase the propulsive efficiency by 5 %

Comment on your results.

Solution: In the first scenario:

W (3.1)
s = 0.95W (1)

s = 168142kg

Replacing in the range equation and computing the ratio of the ranges of the
new and the old design, we obtain:

R
(3.1)
max

R
(1)
max

=
ln
(

Wfuel+npwp+0.95Ws

npwp+0.95Ws

)
ln
(

Wfuel+npwp+Ws

npwp+Ws

) = 1.03385

i.e. approximately a 3.4 % increase in range.

In the second scenario:

R
(3.2)
max

R
(1)
max

=
ln
(

Wfuel+(np+12)wp+Ws

(np+12)wp+Ws

)
ln
(

Wfuel+npwp+Ws

npwp+Ws

) = 0.996
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16.001, M&S - Fall 2020 Homework #1

i.e. approximately a 0.4 % decrease in range.

The third scenario is trivial since the maximum range depends linearly on the
propulsive efficiency. Therefore, increasing the propulsive efficiency by 5 %
results in increasing the maximum range by 5 %. The range is therefore more
sensitive to the propulsive efficiency than to the structure weight, and almost
not sensitive to the number of passengers.
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i Problem M-1.2
(M.O.: M4)

Figure 1: Crane Supporting a Weight

The crane shown in Figure 1 lifts a weight of W = 15,000 lb and is supported by cables
BD and BE.

(a) Determine the cable tensions in BC, BD and BE (denote these as FBC , FBD, and
FBE, respectively).

Solution: We may obtain the cable tensions by considering the forces acting at
certain points in the structure and enforcing equilibrium. A free body diagram
of the forces at C is shown in Figure 2. Enforcing equilibrium in the x and y
(or e1 and e2) directions

∑
Fy = 0−W −

√
2

2
FAC = 0→ FAC = −

√
2W (1)
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∑
Fx = 0− FBC −

√
2

2
FAC = 0→ FBC = −

√
2

2
FAC = −

(√
2

2

)
(−
√

2W ) = W

(2)

Thus, FBC = W = 15, 000 lb .

Next, we apply equilbrium at point B. Due to symmetry (or balance of forces
in the z-direction) forces FBE = FBD. Projecting the forces FBE and FBD in
the x-direction and applying balance of forces in this direction gives

∑
Fx = 0 (3)

−FBE cosφ cos θ − FBD cosφ cos θ +W = 0 (4)

FBE cosφ cos θ + FBD cosφ cos θ = W (5)

2FBE cosφ cos θ = W (6)

where we define the angles φ and θ in the planar triangles given in Figures 3
and 4. From the Figures, cosφ =

√
125√
350

and cos θ = 10√
125

. This gives

2FBE cosφ cos θ = W (7)

2FBE

(√
125√
350

)(
10√
125

)
= W (8)

FBE =

√
350

20
W = 14031 lb (9)

Thus, FBE = FBD = 14031 lb .

(b) Assume that the crane may pivot about the xy-plane, so that cable BC now makes
an angle α with the positive x-axis. Determine an expression for the ratio of cable
tensions FBD

FBE
in terms of this angle α. What is the value of α when FBD

FBE
= 3?

Note: Follow the right-hand rule in selecting the positive convention for α.

Solution: A topdown view of cables BC, BE and BD is given in Figure 5.

We apply summation of forces in both the x and z directions. This results in∑
Fz = 0 (10)

FBE cosφ sin θ − FBD cosφ sin θ −W sinα = 0 (11)
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∑
Fx = 0 (12)

−FBE cosφ cos θ − FBD cosφ cos θ +W cosα = 0 (13)

Thus, we aim to solve the following system of equations

FBE cosφ sin θ − FBD cosφ sin θ −W sinα = 0 (14)

−FBE cosφ cos θ − FBD cosφ cos θ +W cosα = 0 (15)

for the ratio FBD

FBE
. We can use manipulations to obtain this ratio. One approach

is to multiply the first equation by cos θ and the second equation by sin θ.
Adding the two equations (thereby eliminating FBE) and solving for FBD gives

FBD =
cosα sin θ − sinα cos θ

2 cosφ sin θ cos θ
W (16)

Subtracting the two equations (thereby eliminating FBD) and solving for FBE

gives

FBE =
sinα cos θ + cosα sin θ

2 cosφ sin θ cos θ
W (17)

Taking the ratios gives

FBD

FBE

=
cosα sin θ − sinα cos θ

sinα cos θ + cosα sin θ
(18)

Given that cos θ = 10/
√

125 = 2/
√

5, sin θ = 5/
√

125 = 1/
√

5 (see Figure 4),
we have

FBD

FBE

=
cosα− 2 sinα

2 sinα + cosα
(19)

We may set FBD

FBE
= 3 and solve for the corresponding value of α. This gives

3 =
cosα− 2 sinα

2 sinα + cosα
(20)

6 sinα + 3 cosα = cosα− 2 sinα (21)

8 sinα = −2 cosα (22)

tanα =
sinα

cosα
=
−2

8
=
−1

4
(23)

Thus, α = tan−1(−1/4) ≈ −14.0◦ .
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(c) For what value α will cable BE experience no loading? For what value α will cable
BD experience no loading? Lastly, what will happen if α falls out outside this
range?

Solution:

• If cable BE experiences no load, then cable BC is aligned in the same
plane as triangle ABD so that cable BD experiences all of the load. This

occurs when α = − tan−1(5/10) = −26.57◦ .

• If cable BD experiences no load, then α = − tan−1(5/10) = 26.57◦ so

that cable BC aligns with the plane of triangle ABE.

• Outside of this range of angles, one of the wires will feel a compressive
force and start to buckle, so that the other wire must support the entire
structure. If α < −26.57◦, cable BE will be in compression. If α > 26.57◦,
cable BD will be in compression. Collapse may occur if one wire begins
to buckle.

C

FAC

FBC

W

Figure 2: Free Body Diagram at Point C of Crane Structure

√
350

√
125

φ

E A

B

15

Figure 3: Triangle used for projection to xy-plane
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E

A
θ

10

5
√

125

Figure 4: Triangle used for projection to x-axis

FAC

FBD FBE

α

θ

B

z

x

Figure 5: Top Down View of FBD at point B (part b)
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i Problem M-1.3
The top of a tin can is removed, and the empty can is inverted over a pair of billiard
balls on a table as shown in the sketch.

Diameter of ball 45 mm
Weight of ball 2.0 N
Diameter of can 70 mm
Weight of empty can with lid removed 1.0 N

Figure 6: Billiard balls in a tin

(a) For the parameters listed, is the system stable or will it tip over?

Solution:

In this problem we will place a ball B of weight Wb and diameter Db on the
top of ball C also of weight Wb and also with diameter Db. The can will have a
weight Wc and diameter Dc. The problem is illustrated by the following figure:
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x

y
Dc

Db

l

φ

RG

G

B

C

RC

Wb

Wb

RB

In this problem we recommend computing the forces and moments that would
be required to attain static equilibrium. If those forces are not possible, then the
system is not in equilibrium and is therefore unstable. We begin the problem
by stating equilibrium of forces on all balls in the system. Starting with ball B:

x

y

B

Wb

RB

FBC

∑
Fx

: FBC ∗ cosφ−RB = 0 (24)

∑
Fy

: FBC ∗ sinφ−Wb = 0 (25)
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Then, the equilibrium of forces on ball C gives:

x

y

C

Wb

RC

FBC

RG

∑
Fx

: RC − FBC ∗ cosφ = 0 (26)

∑
Fy

: RG − FBC ∗ sinφ−Wb = 0 (27)

Note that we used Newton’s third law to equal the forces of B on C and of C
on B. We have four equations and four unknowns RB, RC , RG, and FBC , and
we can therefore solve the problem. The values of cos(φ) and sin(φ) can be
evaluated with the geometry:

cosφ =
Dc −Db

Db

(28)

sinφ =
√

1− cosφ2 (29)

The algebraic computation produces the following results which for convenience
are stated in terms of the variable (φ):

RG = 2Wb (30)

RB =
Wb

tanφ
(31)

RC =
Wb

tanφ
(32)

FCB = FBC =
Wb

sinφ
(33)

Now we can look at the equilibrium of forces on the can. Along the horizontal
axis, we have: ∑

Fx

: RB −RC = 0 (34)
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The equilibrium of forces in the horizontal direction is satisfied based on the
values of RB and RC obtained previously. The equilibrium in the y direction is
computed assuming that the normal force acting on the rim of the can in the x-z
plane will effectively act along the axis of symmetry. We therefore describe this
ring of normal forces per unit length as being represented by an effective force
on the left most point and an effective force on the right most point. We will use
force and moment equilibrium to compute the magnitude of these two fictitious
forces that would be required to hold this configuration in static equilibrium.∑

Fy

= FLeftRim + FRightRim −Wc = 0 (35)

∑
Mz

= (FRightRim−FLeftRim) ∗ Dc

2
+RC ∗

Db

2
−RB ∗ (

Db

2
+Db ∗ sinφ) = 0 (36)

Here we have taken the moments about the origin and we can substitute our pre-
vious expressions to compute the moments on the can as a function of problem
parameters. The previous expression simplifies as:

∑
Mz

= (FRightRim − FLeftRim) ∗ Dc

2
−Wb ∗Db ∗ cosφ = 0 (37)

We use values given for the problem statement, together with the value cos(φ) =
0.555 computed, and we obtain:∑

Mz

= (FRightRim − FLeftRim) ∗ 0.035− 0.05 = 0 (38)

∑
Fy

= FLeftRim + FRightRim − 1 = 0 (39)

We obtain a system with two equations and two unknowns, that we can solve.
The results give FRightRim = 1.214 N and FLeftRim = −0.214 N in order to
hold this system in static equilibrium. Of course it is not possible for the
contact on the left side of the can to produce a vertical force of negative value.
Normal forces always act normal to the surface so a force acting in the negative y
direction from a surface with a normal in the positive y direction is not possible.
The can would need to be glue or held down on the left hand side to attain static
equilibrium therefore the configuration as described is not stable.

(b) Will a third ball added on top of these two provide a stabilizing force?
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Solution:

In this section we analyze the effect that the addition of a third ball has on the
system. The system can now be represented the following way:

x

y

Dc

Db′

l1

l2

φ

θ

RG

G

A

B

C

RA

RB

RC

Wb′

Wb

Wb

We start by stating the equilibrium of forces on all balls in the system. Starting
with ball A this time we have:

∑
Fx

: RA − FBA ∗ cos θ = 0 (40)

∑
Fy

: FBA ∗ sin θ −Wb′ = 0 (41)
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x

y

A

Wb′

RA

FBA

Then for ball B:

∑
Fx

: FAB ∗ cos θ + FCB ∗ cosφ−RB = 0 (42)

∑
Fy

: FCB ∗ sinφ− FAB ∗ sin θ −Wb = 0 (43)

x

y

B

Wb

RB

FCB

FAB

And finally for ball C:

∑
Fx

: RC − FBC ∗ cosφ = 0 (44)

∑
Fy

: RG − FBC ∗ sinφ−Wb = 0 (45)
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x

y

C

Wb

RC

FBC

RG

We also utilize newtons third law to state that the magnitude of the corre-
sponding contact forces between the balls are equal. We have six equations and
six unknowns, which are RA, RB, RC , RG, FAB, and FBC , so we can solve the
system. In order to do so we need to describe the relevant geometric quantities
in terms of problem parameters.

cosφ =
Dc −Db

Db

(46)

cos θ =
Dc − Db′+Db

2
Db′+Db

2

(47)

sin θ =
√

1− cos θ2 (48)

sinφ =
√

1− cosφ2 (49)

The algebraic computation produces the following results which for convenience
are stated in terms of the variables θ and φ.

RG = 2 ∗Wb +Wb′ (50)

RA =
Wb′

tan θ
(51)

RB =
Wb′

tan θ
+

Wb′

tanφ
+

Wb

tanφ
(52)

RC =
Wb′

tanφ
+

Wb

tanφ
(53)

FAB = FBA =
Wb′

sin θ
(54)

FBC = FCB =
Wb′ +Wb

sinφ
(55)
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With this information we can determine the forces acting on the can∑
Fx

: RB −RC −RA = 0 (56)

This condition is satisfied by substitution of the previously computed reaction
force magnitudes.∑

Fx

: (
Wb′

tan θ
+

Wb′

tanφ
+

Wb

tanφ
)− (

Wb′

tanφ
+

Wb

tanφ
)− Wb′

tan θ
= 0 (57)

The equilibrium in the y direction is computed assuming that the normal force
acting on the rim of the can in the x-z plane will effectively act along the axis
of symmetry. We therefore describe this ring of normal forces per unit length
as being represented by an effective force on the left most point and an effective
force on the right most point. We will use force and moment equilibrium to
compute the magnitude of these two fictitious forces that would be required to
hold this configuration in static equilibrium.∑

Fy

= FLeftRim + FRightRim −Wc = 0 (58)

∑
Mz

= (FRightRim−FLeftRim)∗Dc

2
+RA∗(

Db

2
+Db∗sinφ+

Db +Db′

2
∗sin θ) (59)

+RC ∗
Db

2
−RB ∗ (

Db

2
+Db ∗ sinφ) = 0 (60)

Here we have taken the moments about the origin and we can substitute our
previous expressions to compute the left and right normal forces on the can as
a function of problem parameters.

∑
Mz

= (FRightRim−FLeftRim)∗ Dc

2
+ (

Wb′

tan θ
)∗ (

Db

2
+Db ∗ sinφ+

Db +Db′

2
∗ sin θ)

(61)

+(
Wb′

tanφ
+

Wb

tanφ
) ∗ Db

2
− (

Wb′

tan θ
+

Wb′

tanφ
+

Wb

tanφ
) ∗ (

Db

2
+Db ∗ sinφ) = 0 (62)

Then we cancel terms∑
Mz

= (FRightRim − FLeftRim) ∗ Dc

2
+ (

Wb′

tan θ
) ∗ (

Db +Db′

2
∗ sin θ) (63)

−(
Wb′

tanφ
+

Wb

tanφ
) ∗Db ∗ sinφ = 0 (64)
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Simplify∑
Mz

= (FRightRim − FLeftRim) ∗ Dc

2
+ (Wb′) ∗ (

Db +Db′

2
∗ cos θ) (65)

−(Wb′ +Wb) ∗Db ∗ cosφ = 0 (66)

Observe that the third ball has a radius equivalent to that of the other two so
therefore Db = Db′ and also θ = φ. Substituting this into our moment expression
we have the following.∑

Mz

= (FRightRim − FLeftRim) ∗ Dc

2
+ (Wb′) ∗ (

Db +Db′

2
∗ cos θ) (67)

−(Wb′ +Wb) ∗Db ∗ cosφ = 0 (68)

∑
Mz

= (FRightRim−FLeftRim)∗Dc

2
+(Wb′)∗(Db∗cosφ)−(Wb′ +Wb)∗Db∗cosφ = 0

(69)∑
Mz

= (FRightRim − FLeftRim) ∗ Dc

2
− (Wb) ∗Db ∗ cosφ = 0 (70)

Observe that this expression is the same as computed in part A. Our analysis
will be the same and indicate that the third ball does not stabilize the can. In
fact, this expression is entirely independent of Wb′ therefore it does not matter
how heavy our third ball is! No ball of diameter 45 mm can stabilize this system
no matter its weight!

(c) Can any changes to this third ball’s weight or radius be made to stabilize this
system?

Solution: To understand the impact of balls of various sizes and weights we
will simplify the general expression for the moments on the can by substituting
in the definitions of cos θ and cosφ.
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∑
Mz

= (FRightRim − FLeftRim) ∗ Dc

2
+ (Wb′) ∗ (

Db +Db′

2
∗ (
Dc − Db′+Db

2
Db′+Db

2

))−

(71)

(Wb′ +Wb) ∗Db ∗ (
Dc −Db

Db

) = 0

(72)

∑
Mz

= (FRightRim − FLeftRim) ∗ Dc

2
+ (Wb′) ∗ (Dc −

Db′ +Db

2
) (73)

−(Wb′ +Wb) ∗ (Dc −Db) = 0 (74)

∑
Mz

= (FRightRim−FLeftRim)∗Dc

2
+(Wb′)∗(

Db −Db′

2
)−(Wb)∗(Dc−Db) = 0 (75)

The middle term is the term containing the parameters of the third ball. It
vanishes when the diameters are equal, but can provide a positive moment to
the system if Db′ < Db. This moment is proportional to the weight of the new
ball due to dimensional scaling laws. From part A we find that an additional
.015 Nm of torque was required to hold the system in equilibrium. Therefore
the constraint that the third ball must meet is the following.

Wb′ ∗ (
Db −Db′

2
) > 0.015 (76)

Wb′ ∗ (
0.045−Db′

2
) > 0.015 (77)

Any suggested ball that meets this constraint would work to stabilize the system,
but there is an additional condition that Db′ > 0.025 in order for the third ball
to avoid sliding past ball B and make contact with ball C. Should this occur our
analysis of the contact problem would be incorrect as the contact points and
geometry would be different.

Additionally, it should be noted that with this smaller ball diameter it is possible
for the small third ball to become lodged on the right hand side of the can. Such
a situation would not help to stabilize the can as the new ball would effectively
be increasing the weight of ball B and consequently the force at reaction B.
The new ball would also be providing an addition to the moment arm for the
horizontal forces on the right side of the can which convey destabilizing, negative
moments. It is interesting to note that the larger ball will always destabilize,
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and a smaller ball can provide either effect depending on how it settles. Lastly,
we should also note that if the mass of this new third ball becomes sufficiently
large and the new diameter is sufficiently smaller then the diameter of the balls
below it, the new positive moment term could potentially rotate the can around
the left rim and cause instability in the other direction.
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i Problem M-1.4
A small box of mass m hangs from three massless ropes as shown in Figure 7. The ropes
are attached to a ball joint which is located at the origin O of the Cartesian coordinate
system Oxyz. Two of these ropes are also attached to the ball joints A and B which are
fixed to a rigid wall; the third one is connected to the ball joint C which is attached to
a rigid block of mass M . The latter stands on a plane surface; the coefficient of static
friction between it and the surface is µs. Note that the gravity g acts on the small box
and the block which are both made from a homogeneous material.

Hint:

• Static friction is the force F that acts between two solid surfaces which are in
contact but do not move relative to each other. It opposes the relative lateral
motion of the two surfaces which would occur in the absence of the friction due
to applied external forces. The static friction force acts tangentially to the two
contacting surfaces. According to the Coulomb model, it fulfills the condition

|F | ≤ µsN

where µs is the coefficient of static friction corresponding to the considered pair
of surfaces, and N is the acting normal force between the two surfaces. (If the
condition was violated, the surfaces would start moving relative to each other.)

m
M

2

3

2

2

2 1

1

1

1

4

y
z

x

g

bc
O

bc B

b c
A

bcC

Figure 7: Box hanging from three ropes.
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Questions:

(a) For safety reasons, the magnitude of the tensile force in the ropes must not exceed
the maximum admissible value Fmax. What is the maximum value for the mass m
of the small box so that this safety condition is met?

Solution: Ropes can support only axial tensile forces. Express these forces as
vectors in terms of the sought force magnitudes and unit direction vectors:

Force in Rope OA: FOA = FOA v̂OA where v̂OA =
1

3

−2
−1

2

 (78)

Force in Rope OB: FOB = FOB v̂OB where v̂OB =
1

3

−2
1
2

 (79)

Force in Rope OC: FOC = FOC v̂OC where v̂OC =
1

5

3
0
4

 (80)

Consider the force equilibrium for the ball joint at Point O:

x

y
z

F OA

F OB

FOC

mg

bc
O

∑
F = 0 :

FOA + FOB + FOC +mg = 0 (81)

where g = g

 0
0
−1

 (82)

Inserting Eqs. (78) to (80) into Eq. (81) and solving for FOA, FOB, FOC yields:

FOA = FOB =
9

28
mg (83)

FOC =
5

7
mg (84)

The largest force occurs in Rope OC which connects the small box to the block.
Setting FOC = Fmax then yields the maximum value for the mass m that the
small box can have while the force Fmax is not exceeded in any rope:

FOC = Fmax ⇒ mmax =
7

5

Fmax

g
(85)

(b) If the mass m of the small box was chosen too large, the block of mass M might
tilt over. Assuming that the coefficient of static friction between the block and
the surface is large enough to prevent sliding, what is the maximum value for the
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mass m of the box at which no tilting of the block occurs?

Solution: In order to approach this part, consider the static equilibrium for the
block using the x- and z-components of the force vector FOC (i.e. FOC,x = 3

7
mg

and FOC,z = 4
7
mg) from the previous part.

Both a resultant normal force N (resulting from distributed normal forces ex-
erted from the ground on the block) and a resultant friction force F must be
included to represent the ground. Note that the point of attack of these forces
is not necessarily below the center of mass (CM) due to the force exerted by
Rope OC but at an a priori unknown position xN :

FOC,z

FOC,x

Mg

F
N

11

2

2

xN

x

z

b CM

b D

∑
Fx = 0 : −FOC,x + F = 0 (86)∑
Fz = 0 : −FOC,z −Mg +N = 0 (87)∑
M (D) = 0 : (counterclockwisely)

FOC,x · 4−Mg · 1 +N · xN = 0 (88)
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The equilibrium conditions yield the unknown reaction forces N and F as well
as the unknown distance xN :

F =
3

7
mg (89)

N = Mg +
4

7
mg (90)

xN =
1− 12

7
m
M

1 + 4
7
m
M

(91)

The block does not tilt if xN > 0. In that case, the moment about D resulting
from both the force in Rope OC and the weight is positive in the clockwise
direction. If xN = 0, this moment would become zero, and the block would start
tilting as soon as FOC was increased slightly more. Therefore, the maximum
mass m of the small box for which no tilting of the block occurs is

xN = 0 ⇒ m =
7

12
M. (92)

(c) For which value of the coefficient of static friction µs would the block start sliding
(assuming that no tilting has occurred yet)? Using the result from the previous
part, how should the value of the coefficient of static friction µs be chosen so that
sliding and tilting would occur for the same value of the mass m?

Solution:

Following the hint given in the problem statement, the condition for no slipping
of the block is

|F | ≤ µsN, (93)

meaning that slipping would start once

|F | = µsN (94)

has been reached. Using the values for F and N obtained in the previous part,
Eq. (94) yields the minimum coefficient of static friction required to prevent
slipping of the block,

µs =
3

4 + 7M
m

. (95)

If the onset of tilting and slipping of the block is supposed to occur for the same
value of m, the result (92) from the previous part needs to be used in Eq. (95):

µs =
3

16
(96)
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i Problem M-1.5
The circular cylinder A rests on top of two half-circular cylinders B and C, all having
the same radius r, as shown in Figure 8. The weight of A is W , and the weight of
B and C is 1

2
W each. All cylinders are made from a homogeneous material. Assume

that the coefficient of friction between the flat surfaces of the half-cylinders and the
horizontal table top is f . Determine the maximum distance d between the centers of the
half-cylinders to maintain equilibrium.

B C

A

r

r r

d

Figure 8: Circular cylinder A resting on half cylinders B and C.

Solution: We begin by drawing a free body diagram of cylinder A, shown in the
figure

FAB

W

FAC
θ θ

Applying force equilibrium in the e1 and e2 directions

• Equilibrium in e1-direction for cylinder A∑
F1 = 0 (97)

FAB cos θ − FBC cos θ = 0 (98)

FAB = FBC (99)
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• Equilibrium in e2-direction for cylinder A∑
F2 = 0 (100)

−W + FAB sin θ + FBC sin θ = 0 (101)

−W + 2FAB sin θ = 0 (102)

FAB = FBC =
W

2 sin θ
(103)

We may now analyze the forces acting on either half-cylinder B or C. We choose to
analyze B, a free body diagram of which is given in the following figure (including
the normal and friction forces acting on it).

Ff

W

FN

FAB
θ

Applying force equilibrium in the e2 and e1 directions

• Equilibrium in e2-direction for half-cylinder B∑
F2 = 0 (104)

FN −
W

2
− FAB sin θ = 0 (105)

FN =
W

2
+ FAB sin θ (106)

FN =
W

2
+

W

2 sin θ
sin θ (107)

FN = W (108)

• Equilibrium in e1-direction for half-cylinder B∑
F1 = 0 (109)

FAB cos θ − Ff = 0 (110)

W

2 sin θ
cos θ − fFN = 0 (111)

W

2
cot θ − fW = 0 (112)

cot θ = 2f (113)
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We may determine cot θ in terms of geometric quantities by analyzing the triangle
in the following figure.

2r

d
2

θ

Using the Pythagorean theorem, we find that the missing side has length
√

4r2 − d2

4
.

Thus,

cot θ = 2f (114)

d/2√
4r2 − d2

4

= 2f (115)

d2/4

4r2 − d2

4

= 4f 2 (116)

d2 = 16f 2(4r2 − d2

4
) (117)

Gathering like terms and simplifying results in the following expression for the max-
imum distance d

d =
8rf√

1 + 4f 2
(118)
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