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16.001, M&S - Fall 2020 Homework #4 

i Problems M-4.1 
(M.O M7,M8) Consider the rigid bar A-C shown in Figure 1. The bar is subject to a 
load of intensity P . The hinge support includes a torsional spring which reacts with a 
moment M = kT θ, where θ is the angle of rotation of the bar at that point and kT is the 
torsional spring constant. The linear springs at the remaining supports have stiffnesses 
of k and 2k, respectively. 
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(a) (1 point) Is this structure statically determinate, indeterminate or unstable? 

Solution: Indeterminate 

(b) (2 points) Draw the FBD for the whole structure and write the equations of global 
equilibrium to obtain expressions for the unknown reactions. 

Solution: 
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FBD shown in figure. From the FBD write the equations of equilibrium. X 
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X 
F2 = 0 = RA + RB + RC + P X 

MA 
L − RC L + M − PL 
2 

Where M is a function of θ (M(θ)) and the reactions at B and C are functions 
of their respective displacements (RB (δB ) & RC (δC )) 

2 

2 

2 

22 

B−0 R= = 2 

2 

(c) (2 points) Draw a schematic of the deformed structure under load, identify appro-
priate kinematic variables describing the deformation and establish compatibility 
equations relating these kinematic variables. 

Solution: 
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The schematic of deformation in shown in the figure. The kinematic variables 
in the problem are θ, δB, & δC , which are the rotation of the beam about A, 
the vertical displacement of the beam at B, and the vertical displacement of 
the beam at C, respectively. Using the small angle approximation 
(sin(θ) = θ), the compatibility equations for the structure are: 

2δB = δC 

L 
δB = θ 

2 
δC = θL 

(d) (1 point) Complete the system of equations by providing suitable constitutive laws 
for each of the participating structural components of this structural system. Keep 
in mind that the bar itself is assumed completely rigid and therefore does not have 
a constitutive law. 

2

2 

Solution: 
Three constitutive equations are needed for this problem (one for each spring). 
Compatibility has been included in the final term of the last two equations. 

M = ktθ 
L 

RB = −kδB = −kθ 
2 

RC = −2kδC = −2kθL 
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(e) (2 points) Solve the system of equations you have obtained and compute the reaction 
forces and the deflections of each spring. 

Solution: 

To solve the system of equations, start by substituting the constitutive laws 
with the compatibility included into the equations of equilibrium. 

X 
F2 = 0 = R2 

A − kθ 
L − 2kθL + P 
2 X L2L L p0

MA = 0 = kθ + 2kθLL + ktθ − 
2 2 2 

Solve the moment equation of equilibrium for θ, which results in: 

4PL 
θ = [rad]

9kL2 + 4kt 

Next, substitute θ back into the equations for δB, δC , R2 
B , M, & R2 

C . 

2PL2 

δB = [m]
9kL2 + 4kt 
4PL2 

δC = [m]
9kL2 + 4kt 
4PL 

M = −kt [N-m]
9kL2 + 4kt 

4kP L 
RB = − [N]2 9kL2 + 4kt 

4kP L2 

RC = − [N]2 9kL2 + 4kt 

Finally, substitute the reactions in the equation of equilibrium for F2 and solve 
for R2 

A 

4kP L 4kP L2 

RA = −P + + [N]2 9kL2 + 4kt 9kL2 + 4kt 

You now have the 4 reaction forces and the deflections of the springs ( 2 trans-
lational & 1 rotational). 
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i Problems M-4.2 
(3 points) (MO: M7,M8) In the structure shown in Figure 2 the bars are made from 

2aluminum tubes of Young’s modulus E = 70GPa and cross-sectional area A = 10mm . 
The force F = 10KN. Additionally, the grid scale is in meters. Analyze the structure to 
find the following: 

(a) The forces in each bar. 

(b) The deflection of point D. 

(c) The reactions at the supports. 

Solution: 

To start one must realize that this system is statically indeterminate. With that in 
mind, write the constitutive law and compatibility conditions. 

Compatibility 
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δAD = −√ 
3 

u D 

δBD = −u D 

3 
δCD = −√ u D 

2 

13 

Constitutive Law 

FAD = √ 
EA 

δAD = − 
3 
EAuD 

2 

EA 3 D√ −F δ EAu = = CD CD 2 

Dwhere positive is defined in the positive direction.u e2 

Now,apply method of joints point D. Specifically, looking the vertical direction. at at 

13 13 

2 
EA EA 

FBD = δBD = − u D 

3 3

2

2 

13 
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X 3 3 

2 

X 

F2 = 0 = −F + FBD + √ FC D + √ FAD 
13 13� � 

1 9 9 
= −F + − − √ − √ EAuD 

3 13 13 13 13 
F → u D = −� � = −0.020m 

2 

18+ √ EA 
13 13 

Next, substitute the value for the deflection at D into the Constitutive law for each 
bar to find the forces in them. 

FAD = 3217N 

FBD = 4647N 

FCD = 3217N 

Finally, solve for the reactions at the supports. By inspection of support B. 

RB = 0 

RB = 4647N 

Applying method of joints at A. 

F1 = 0 = RA + √ 
2 

FAD 
13 X 3 

F2 = 0 = RA − √ FAD 
13 
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solving for the reactions yield: 

RA = −√ 
2 

FAD = −1784.5N 
13 
3 

RA = √ FAD = 2676.7N 
13 

Applying method of joints at C. 

F1 = 0 = RC − √ 
2 

FCD 
13 X 

F2 = 0 = RC − √ 
3 

FCD 
13 

1

2 

Solving for the reactions yield: 

2 
RC = √ FCD = 1784.5N 

13 

RC = √ 
3 

FCD = 2676.7N 

2 

X 

1

2
13 

1 
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Figure 3: Free Body Diagram 

Page 7 

https://�1784.5N


16.001, M&S - Fall 2020 Homework #4 

i Problems M-4.3 
(4 points) Consider the linkage shown in Figure 4 comprised of two steel members (E = 
200 GPa). An applied force of P = 10 kN is applied to the linkage at point C. 
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Figure 4: Two Member Steel Linkage 

Determine the minimum allowable radius of the steel members such that point C does 
not have a vertical deflection of more than 1 cm. You may assume that the steel members 
have circular cross-sections, each of the same area. The grid scale is given in meters. 

Solution: We begin by analyzing a global FBD of the linkage system 
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Applying force and moment equilibrium 

© Tata McGraw-Hill Education Private Limited. All rights reserved. This content is excluded from our Creative Commons license. For 
more information, see https://ocw.mit.edu/help/faq-fair-use/ 
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X 
F1 = 0 → RA + RB = 0 X 

F2 = 0 → RA + RB − P = 0 X 
MA = 0 → −2P + 5RB = 0 

We find that the vertical reactions at A and B are 

2 
RB = P 

1

2 

5 
3 

RA 

2 

P= 

1 

5 

2 

Now applying method of joints Cat 

Analyzing horizontal reactions point Aat 

1 

1 

2

2 

1 

√X 

1 

2 3 
F1 = 0 → − FAC + √ FBC = 0 

2 13√ 
2 2 

F2 = 0 → − FAC − √ FBC − P = 0 
2 13 

X 

1 

Solving yields 

−6 
FAC = √ P 

5 2√ 
− 13 

FBC = P 
5 

X 
F A = 0 
√ 
2 

RA + FAC = 0 
2√ √ � � 

2 2 6 3 
RA = − FAC = − − √ P = P 

2 2 5 2 5 

Thus 

3 
RA = P 

5 
3 

RB = − P 
5 

Page 9 



16.001, M&S - Fall 2020 Homework #4 

Note: It was not necessary to solve for all of the reaction forces. Only the internal 
forces on the bars FAC and FBC were required, and these were found using method 
of joints at C. 

Next, applying the constitutive relation 

FXY LXY 
δXY = 

EXY AXY 

We have 

FAC LAC FAC LAC
δAC = = 

EAC AAC EA 
FBC LBC FBC LBC 

δBC = = 
EBC ABC EA 

By compatibility � � 
1 1 1C C CδAC = u · −√ e1 − √ e2 = −√ (u1 + u2 )
2 2 2� � 

3 2 1C C CδBC = u · √ √ = √ (3u − 2u2 )e1 − e2 1
13 13 13 

Eliminating uC gives 1 

√ √ 
2δAC + 

13 
δBC = − 

5 
u C 
23 3 

Substituting our variables, and solving for area A and ultimately radius r 

√ √ 13 5 C2δAC + δBC = − u23 3� � √ � �√ FAC LAC 13 FBC LBC 5 
2 + = − u2 

C 

EA 3 EA 3 
√ √ 

2FAC LAC 13 FBC LBC +
E 3 EA = πr2 = −5 Cu2s√ 

3 
√ 

2FAC LAC 13 FBC LBC +
E 3 E r = −5 

3 πu
C 
2 
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CWe enforce that u = 0.01 m and substitute all values which are known 2 

6 6 
FAC = − √ P = − √ (10000 N) 

5 2 5 2√ √ 
13 13 

FBC = − P = − (10000 N) 
5 5√ 
LAC = 2 2 m 

√ 
LBC = 13 m 

E = 200 · 109 GPa 
C u = 0.01 m2 

Solving for r yields 
r = 0.0025 m 

As we will see later in the course, it is possible that the compressive forces will make 
the bars buckle and this could be the limiting design consideration. 
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i Problems M-4.4 
(thermal loads) 

F (2) F (1) F (2)

Figure 5: Bar assembly subject to temperature changes 

Consider the assembly of bars shown in Figure 5. The center bar is made of a mate-
rial with Young’s modulus E(1), area of the cross section A and coefficient of thermal 
expansion (CTE) α(1), whereas the respective properties of the left and right bars are 
E(2), A, α(2). A rigid block at the top constrans the deformation of the bars but the 

¯block is free to move in the vertical direction by an arbitrary value δ. However, the 
block cannot rotate. A temperature change of Δθ is applied after assembly. 

(a) (2 points) Express in mathematical form all the relevant principles that apply in 
this problem both for the individual bars and for the assembly. Make sure you draw 
Free Body Diagrams as necessary. 
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Solution: Equilibrium: FBD of the block 

2F (2) + F (1) = 0 

F (i)LConstitutive response of each bar: δ(i) = + α(i)ΔθL.
E(i)A 

Compatibility condition: The three bars must have the same deflection which 
must be equal to the deflection of the block, i.e. δ(i) = δ for all the bars. 
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(b) (1 point) Identify all the unknowns of the problem. Count the number of equations 
you have for each principle and comment on the “solvability” of the problem. Is 
the problem statically determinate or indeterminate? 

Solution: 

Unknowns 

• Equilibrium: 2 unknowns (F (1), F (2), (by symmetry we assume the left 
and right bars have the same load F (2). 

• Constitutive: 2 new unknowns δ(1), δ(2). 

• Compatibility: 1 additional unknown δ̄. Total: 5 unknowns 

Equations 

• Equilibrium: only 1 relevant equilibrium equation (sum of forces in the 
vertical direction equal to zero). 

• Constitutive: 2, one for each bar of the form above. 

• Compatibility: 2, one for each bar of the form above. 

In principle, the problem can be solved as we have as many equations as un-
knowns. The problem is statically indeterminate as we have two force unknowns 
and one equilibrium equation. 

(c) (3 points) Derive expressions for the forces in the bars and the displacement δ due 
to the “temperature loading” of the assembly. 

= δ(2) ¯Solution: From compatibility δ(1) = δ, and constitutive: 

F (1)� F (2)�L 
+ α(1)Δθ� 

L 
+ α(2)Δθ�L = L 

E(1)A E(2)A 

which can be rewritten as 

F (2) F (1) 
= (α(1) − α(2))AΔT− 

E(2) E(1) 

From this equation we learn that if the two materials have the same CTE, 
the forces on the bars will be zero, as all bars will expand or contract by the 
same amount regardless of any other properties (E, A, L). Combining with the 
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equilibrium equation: 

−2F (2)z}|{ 
F (2) F (1) 

= (α(1) − α(2))AΔθ− 
E(2) E(1)� � 

F (2) 
1 2

= (α(1) − α(2))AΔθ+ 
E(2) E(1) � � 
E(1) + 2E(2) 

F (2) = (α(1) − α(2))AΔθ 
E(1)E(2) 

E(1)E(2) 

F (2) A(α(1) − α(2))Δθ= 
E(1) + 2E(2) 

E(1)E(2) 

F (1) A(α(1) − α(2))Δθ= −2 
E(1) + 2E(2) 

Replacing the values of the forces in the constitutive and compatibility equa-
tions, we find: 

F (2) z }| { 
E(1)�E(2)� 

δ̄ = δ(1) = δ(2) A(α(1) − α(2))Δθ
L 

+ α(2)ΔθL= 
E(1) + 2E(2) � 

E(2)��� A 
E(1)(α(1) − �α(2)�)ΔθL + 

� 
E(1)� + 2E(2) 

� 
α(2)ΔθL� 

= 
E(1) + 2E(2) � � 

E(1)α(1) + 2E(2)α(2) 

δ̄ = ΔθL 
E(1) + 2E(2) 

There is an interesting interpretation of this result: the structure elongation is 
as if the whole system had an effective CTE which is the weighted-average of 
the CTEs of the two materials, where the weights are the stiffnesses of the bars 
involved. 

(d) (2 points) Show that the deflection of the system δ̄  does not depend on the magni-
tude of the individual material Young’s moduli E(1), E(2) but only on their relative 

E(1) 
value η = 

E(2) . Obtain an expression for the deflection in terms of η. 
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16.001, M&S - Fall 2020 Homework #4 

Solution: Replace E(1) = ηE(2) in the boxed equations above: 

z 
E}|(1){ 
ηE(2) α(1) + 2E(2)α(2) 

δ̄ = ΔθL 
ηE(2) +2E(2)| {z } 
E(1) 

ηα(1) + 2α(2) 

δ̄ = ΔθL 
η + 2 

It can be seen that as bar 2 gets much stiffer than 1 (e.g. bar two is made of 
steel and bar one is made of cheese), η → 0, the deflection corresponds to that 
of the two bars with material 2. Conversely, when bar 1 is much stiffer, η →∞, 
it dictates the deflection. 
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i Problems M-4.5 
The structure in Figure 6 is composed of three bars with the same cross-sectional area 
A = 10 mm2 and length L = 3 m, but of materials with different elastic (Young’s) 
moduli: bar AD has E(1) = 70 GPa, bar BD has E(2) = 120 GPa, bar CD, has 
E(3) = 210 GPa. The corresponding CTEs are 23, 9 and 13 × 10−6K−1 . The structure is 
subjected to a temperature increase Δθ = 100K. 

D

F (2)

F (3)

F (1)

2π
3

2π
3

2π
3

Figure 6: Three bar structure subject to temperature increase 

(a) (3 points) Compute the forces in each bar and the deflection of point D caused by 
the temperature change. 

Solution: 

Following the usual script, we first analyze equilibrium: Consider the free 
body diagram of the three bar structure. To reduce clutter, let’s call bar AD 
bar 1, bar BD bar 2 and bar CD bar 3. 
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This is a planar system of concurrent forces. Applying the two equations of 
translational equilibrium we find that the system is statically indeterminate. 
Although we cannot find the value of the forces from equilibrium alone, we can 
conclude from the symmetry of the problem that all three forces must be the 

F (1) F (2) F (3)same: = = = F . (If you are not convinced, think of projecting 
any two forces in the direction perpendicular to the third, to conclude that those 
two need to be the same, and, ergo, the third as well). 

Now let’s consider the constitutive law in each bar: δ(i) = FL + α(i)ΔθL.
E(i)A 

Compatibility: 
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D

F (2)

F (3)

F (1)

P

2π
3

2π
3

2π
3

Use the fact that the vector u = u1e1 + u2e2 projected on the directions of the 
undeformed bars give their elongation, i.e.: u.e(i) = δ(i) (here (i) is a label of 
the unit vector of bar (i): 

√ √ 
1 3 1 3(1) (2) (3)e = 1e1 + 0e2, e = − e1 − e2, e = − e1 + e2
2 2 2 2 
(1) = δ(1)u · e = u1 √ 
1 3(2) = δ(2)u · e = − u1 − u2
2 2√ 
1 3(3) = δ(3)u · e = − u1 + u2
2 2 

The three compatibility equations can be combined into one containing only a 
relation between the three bar elongations by: adding the last two to eliminate 
u2, and using the first to replace u1 with δ(1). We obtain: 

−δ(1) = δ(2) + δ(3) 

or δ(1) + δ(2) + δ(3) = 0 

which could be anticipated also from the symmetry of the problem. Replacing 
from the constitutive equations for each bar, we obtain a single equation for F . � � 

L� 1 1 1 � � 
α(1) + α(2) + α(3)F + + +ΔθL� = 0 

E(1) E(2) E(3)A 

E(1)E(2)E(3)� � 
α(1) + α(2) + α(3)F = −ΔθA 

E(1)E(2) + E(2)E(3) + E(3)E(1) 

Once F is found, we can go back to the constitutive laws for the bars and find 
the bar elongations and obtain: � 

E(2)E(3)(α(1) + α(2) + α(3)) 
� 

δ(1) α(1) −= ΔθL 
E(1)E(2) + E(2)E(3) + E(3)E(1) � � 
E(3)E(1)(α(1) + α(2) + α(3))

δ(2) α(2) −= ΔθL 
E(1)E(2) + E(2)E(3) + E(3)E(1) 

= ΔθL 

� 
E(1)E(2)(α(1) + α(2) + α(3)) 

� 

δ(3) α(3) − 
E(1)E(2) + E(2)E(3) + E(3)E(1) 
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And u1, u2 can be obtained from the compatiblity equations: � � 
E(2)E(3)(α(1) + α(2) + α(3)) 

= δ(1) α(1) −u1 = ΔθL 
E(1)E(2) + E(2)E(3) + E(3)E(1) 

√ 
3 � � 
2δ(3)u2 = + u1

3� � 
−E(1)E(2)(α(1) + 2α(2)) + E(1)E(3)(α(1) + 2α(3)) + E(2)E(3)(α(3) − α(2))ΔθL 

u2 = √ 
3 [E(1)(E(2) + E(3)) + E(2)E(3)] 

Replacing all the values of the problem material properties and geometry, we 
get: 

F ∼ −1.643kN 

u1 ∼ −0.143mm, u2 ∼ 1.71mm 

δ(1) ∼ −0.143mm, δ(2) ∼ −1.41mm, δ(3) ∼ 1.55mm 

(b) (2 points) Find the load P (magnitude and direction), that needs to be applied at 
point D to eliminate the displacement produced by the temperature change and 
return joint D to the original location. 

Solution: In this second part, the external load applied at D eliminates the 
δ(2) δ(3)displacement. Therefore, we have δ(1) = = = 0. We consider the 

constitutive laws in each of the beams: 

F (i)L 
= α(i)ΔθL = δ(i) = 0 

E(i)A 

From the constitutive laws we can find the internal loads in each of the beams. 
Note that the internal forces are not necessarily equal in magnitude in this 
second part, because there is an external force P applied to node D. 

F(i) (i)= α(i)ΔθE(i)Ae 

Inserting this expression in the equilibrium of forces at D, we get: 

−F(1) − F(2) − F(3) + P = 0 

Projecting this equation in the x and y directions, we get: X 
= −α(1)ΔθE(1)A +

1 
α(2)ΔθE(2)A +

1 
α(3)ΔθE(3)A + P1F1 = 0 

2 2√ √X 3 
α(2)ΔθE(2)A − 

3 
α(3)ΔθE(3)A + P2F2 = = 0 

2 2 
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The final form for P in each direction is given here: � � 

α(1)E(1) − 
1
(α(2)E(2) + α(3)E(3))P1 = ΔθA = −295N 
2 √ 

3 � � 
α(3)E(3) − α(2)E(2)P2 = ΔθA = 1429N 

2 

The magnitude of the external force P is therefore: 

|P| ∼ −1460N 

The equilibrium at node D with the external load applied P is shown in the 
figure below. 
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