# 16.001 - Materials & Structures Problem Set #8

| Instructors:         | Raúl Radovitzky   |
|----------------------|-------------------|
|                      | Zachary Cordero   |
| Teaching Assistants: | Grégoire Chomette |
|                      | Michelle Xu       |
|                      | Daniel Pickard    |

Department of Aeronautics & Astronautics M.I.T.

| Question | Points |
|----------|--------|
| 1        | 5      |
| 2        | 5      |
| 3        | 8      |
| 4        | 3      |
| 5        | 3      |
| Total:   | 24     |

### ○ Problems M-8.1 [5 points]

You've been tasked with selecting the material for the grid fins on SpaceX's next launch vehicle, Starship. These grid fins will be significantly larger than the ones on the Falcon 9 (7x3 m<sup>2</sup> vs. 2x1.2 m<sup>2</sup>), making cost a much bigger concern. The grid fins should be light, cheap, and capable of surviving multiple exposures to high temperatures (>400 °C). They also need to be stiff so that they don't deflect during reentry.

In each of the following materials selection problems, list the function, objective(s), constraints, and materials indices with which ranked the different materials. You can use this reference to determine the appropriate materials index. Show the Property Diagram(s) that you used to make your decisions with the appropriate materials index contour overlaid. Indicate on the property diagram the best 2 or 3 materials options using the labeling function.

# 16.001, M&S - Fall 2020

| <br> |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|------|--|------|------|--|------|--|---|------|-----|-----|---|------|------|---|---|---|---|------|------|------|--|
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   | <br> |     |     |   |      |      |   |   |   |   |      |      |      |  |
| <br> |  |      |      |  |      |  |   | <br> |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   | - |   | + |      |      |      |  |
|      |  |      |      |  |      |  | + |      |     |     |   |      |      |   |   |   | + |      |      |      |  |
|      |  |      |      |  |      |  | + |      |     |     |   |      |      |   |   |   |   |      | -    |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   | - |   | + |      |      |      |  |
|      |  |      | <br> |  |      |  | - |      |     |     |   |      |      |   |   |   | + | -    |      |      |  |
|      |  |      |      |  |      |  | + |      |     |     |   |      |      |   | - |   | + |      | +    |      |  |
|      |  |      |      |  |      |  | + |      |     |     |   |      |      |   | - |   | + |      | -    |      |  |
| <br> |  |      |      |  |      |  |   | <br> |     |     |   |      |      |   |   |   | - |      |      |      |  |
| <br> |  | <br> |      |  | <br> |  |   |      |     |     |   | <br> |      |   |   |   | - |      | <br> |      |  |
|      |  |      | <br> |  |      |  | _ | <br> |     |     |   | <br> |      | _ |   |   |   |      | <br> | <br> |  |
|      |  |      |      |  |      |  | _ |      |     |     |   | <br> |      |   | _ |   | - | <br> | <br> |      |  |
|      |  |      |      |  | <br> |  |   | <br> |     |     |   | <br> |      |   |   |   |   |      |      |      |  |
| <br> |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
| <br> |  | <br> |      |  | <br> |  | _ |      |     |     |   | <br> |      |   | _ |   | _ |      | <br> |      |  |
|      |  | <br> |      |  | <br> |  | _ | <br> |     |     |   | <br> |      |   | _ |   | _ | <br> | <br> | <br> |  |
|      |  |      |      |  |      |  |   |      |     |     |   | <br> |      |   | _ |   | _ | <br> | <br> | <br> |  |
|      |  | <br> |      |  | <br> |  |   | <br> |     |     |   | <br> |      |   | _ |   | _ |      | <br> | <br> |  |
| <br> |  | <br> | <br> |  | <br> |  | _ | <br> |     |     |   | <br> |      |   | _ |   | _ | <br> | <br> |      |  |
| <br> |  | <br> | <br> |  | <br> |  | _ | <br> |     |     |   | <br> |      |   | _ |   | _ | <br> | <br> | <br> |  |
|      |  |      |      |  |      |  | + |      |     |     |   |      |      |   |   | _ | - |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  | - |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  | + |      |     |     |   |      |      |   | - | _ | + |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   | _    |      |   |   |   | _ |      |      |      |  |
|      |  |      |      |  |      |  | _ |      |     |     |   |      |      |   |   |   | - |      | _    |      |  |
|      |  |      |      |  |      |  | - |      |     |     |   |      |      |   |   |   | _ |      |      |      |  |
|      |  |      |      |  |      |  | _ |      |     |     |   |      |      |   | _ |   |   |      |      |      |  |
|      |  |      |      |  |      |  | _ |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  | _ |      |     |     |   |      | <br> |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  | _ |      |     |     |   |      |      |   |   |   | _ |      |      |      |  |
|      |  |      |      |  |      |  | _ |      |     |     |   |      |      |   |   |   | _ |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      | <br> |   | _ |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      | P۶  | age | 3 |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      | т ( | ~50 | 5 |      |      |   |   |   | _ |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |
|      |  |      |      |  |      |  |   |      |     |     |   |      |      |   |   |   |   |      |      |      |  |

# $\bigcirc$ **Problems M-8.2** [5 points]

The extensional and shear strains at a point of a loaded structure have been measured with respect to a particular set of cartesian basis vectors. The measured values are

$$\epsilon_{11} = -800 \times 10^{-6} \tag{1}$$

$$\epsilon_{22} = -200 \times 10^{-6} \tag{2}$$

$$\gamma_{12} = -600 \times 10^{-6} \tag{3}$$



**2.2** (2 points) Find the principal strains and principal directions. Show also the deformed shape of an element which originally was a parallelepiped with its faces parallel to these axes

| ~ | <br>101 | <br> | <br> |  |  |      |  |      |      |      |      |  |      |      |
|---|---------|------|------|--|--|------|--|------|------|------|------|--|------|------|
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  | <br> |  | <br> |      |      | <br> |  | <br> |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      | <br> |      | <br> |  |      |      |
|   |         |      |      |  |  |      |  |      |      | <br> |      |  | <br> | <br> |
|   |         |      |      |  |  |      |  |      |      | <br> |      |  | <br> | <br> |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  | <br> |      |
|   |         |      |      |  |  |      |  |      | <br> | <br> |      |  | <br> |      |
|   |         |      |      |  |  |      |  |      |      | <br> |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |
|   |         |      |      |  |  |      |  |      |      |      |      |  |      |      |

**2.3** (2 points) Find the maximum shear strains and corresponding directions. Show also the deformed shape of an element which originally was a parallelepiped with its faces parallel to these axes



Figure 1: T-V rosette strain gauge

#### $\bigcirc$ **Problems M-8.3** [8 points]

Consider the T-V rosette shown in Figure 1. The measured strains along the directions of the individual strain gauges are respectively  $e_1 = 910\mu$ ,  $e_2 = 990\mu$ ,  $e_3 = 310\mu$ , and  $e_4 = 190\mu$ .

**3.1** (2 points) Use the equations of transformation of strain components in 2D as many times as needed, to relate the measured strain components and those in the cartesian system  $\mathcal{E} = (\mathbf{e}_1, \mathbf{e}_2)$ 



**3.2** (2 points) Can you determine the strain components  $\varepsilon_{11}, \varepsilon_{22}, \varepsilon_{12}$  from these equations? Do you have insufficient or redundant information? How can this be useful from the experimental standpoint?

|   |  |      |  | - |      |  | -    |  |  |      |  |      |  |  |      |      |  |
|---|--|------|--|---|------|--|------|--|--|------|--|------|--|--|------|------|--|
|   |  |      |  |   |      |  |      |  |  |      |  |      |  |  |      |      |  |
|   |  |      |  |   |      |  |      |  |  |      |  |      |  |  |      |      |  |
|   |  |      |  |   |      |  |      |  |  |      |  |      |  |  |      |      |  |
|   |  |      |  |   |      |  |      |  |  |      |  |      |  |  |      |      |  |
|   |  |      |  |   |      |  |      |  |  |      |  |      |  |  |      |      |  |
|   |  |      |  |   |      |  |      |  |  |      |  |      |  |  |      |      |  |
|   |  | <br> |  |   |      |  |      |  |  | <br> |  | <br> |  |  | <br> |      |  |
| - |  | <br> |  |   |      |  | <br> |  |  | <br> |  | <br> |  |  |      |      |  |
| - |  |      |  |   |      |  |      |  |  |      |  |      |  |  |      |      |  |
|   |  |      |  |   |      |  |      |  |  |      |  |      |  |  |      |      |  |
|   |  |      |  |   | <br> |  |      |  |  |      |  |      |  |  | <br> |      |  |
|   |  |      |  |   | <br> |  | <br> |  |  | <br> |  | <br> |  |  | <br> | <br> |  |
|   |  |      |  |   |      |  |      |  |  | <br> |  | <br> |  |  | <br> |      |  |
|   |  |      |  |   |      |  |      |  |  |      |  |      |  |  |      |      |  |
|   |  |      |  |   |      |  |      |  |  |      |  |      |  |  |      |      |  |
|   |  |      |  |   |      |  |      |  |  |      |  |      |  |  |      |      |  |

**3.3** (3 points) Use a least-squares approach to obtain the "best approximation" to the strain components  $\varepsilon_{11}, \varepsilon_{22}, \varepsilon_{12}$  in terms of the measured data. Hint: as it name indicates, the least squares method finds a solution of the overdetermined system by minimizing the sum of the square of the errors incurred in the satisfaction of each equation.



|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      | <br> |
|---|--|--|------|------|--|--|--|------|--|--|------|------|--|------|------|
|   |  |  |      | <br> |  |  |  |      |  |  |      | <br> |  |      | <br> |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      | <br> |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      | <br> |
|   |  |  | <br> | <br> |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      | <br> |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      | <br> |
|   |  |  | <br> | <br> |  |  |  | <br> |  |  |      |      |  | <br> |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
| _ |  |  |      |      |  |  |  |      |  |  |      |      |  |      | <br> |
|   |  |  |      |      |  |  |  |      |  |  | <br> |      |  |      | <br> |
|   |  |  |      | <br> |  |  |  |      |  |  |      | <br> |  | <br> | <br> |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
| _ |  |  |      |      |  |  |  |      |  |  |      |      |  |      | <br> |
|   |  |  |      |      |  |  |  |      |  |  | <br> |      |  |      | <br> |
|   |  |  |      | <br> |  |  |  |      |  |  |      | <br> |  | <br> | <br> |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |
|   |  |  |      |      |  |  |  |      |  |  |      |      |  |      |      |

 $\mathbf{3.4}$  (1 point) Find the orientation of the principal strain directions, and the principal strains

 $\bigcirc \begin{array}{c} \mathbf{Problems M-8.4} \\ (M.O. M11) \end{array}$  [3 points]

The state of strain in a composite is determined by a rectangular strain gauge rosette attached to the surface, as shown in Figure 2. The three strain gauges (a, b, & c) are arranged at angles  $\alpha_a = 0^{\circ}, \alpha_b = 45^{\circ}, \& \alpha_c = 90^{\circ}$ . The gauges read  $\epsilon_a = 20 \times 10^{-6}, \epsilon_b = 55 \times 10^{-6}, \epsilon_c = -60 \times 10^{-6}$ . The composite is a polymer matrix reinforced with unidirectional fibers that are aligned at  $120^{\circ}$  from horizontal.



Figure 2: Composite material with 3 strain gauges

Determine the normal and shear strain components in the directions aligned and perpendicular to the fibers.

# 16.001, M&S - Fall 2020

|       |  |      |      | <br> | <br> | <br> | _ |      |    |    | _ |   |      |   | <br> | <br> | <br> |   |   | _ |
|-------|--|------|------|------|------|------|---|------|----|----|---|---|------|---|------|------|------|---|---|---|
|       |  |      |      |      |      |      |   |      |    |    | _ |   |      |   |      |      | <br> |   |   | _ |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   | <br> |      | <br> |   |   |   |
| <br>  |  |      |      | <br> |      |      | _ | <br> |    |    |   |   | <br> |   | <br> |      | <br> |   |   |   |
|       |  |      |      |      | <br> |      |   |      |    |    |   |   |      |   | <br> |      |      |   |   |   |
|       |  |      |      | <br> |      |      |   |      |    |    | _ |   |      |   | <br> |      | <br> |   |   |   |
| <br>  |  |      |      |      |      |      |   |      |    |    |   |   | <br> |   | <br> |      | <br> |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   | <br> |   | <br> |      |      |   |   |   |
|       |  |      |      | <br> |      |      |   | <br> |    |    |   |   |      |   |      |      | <br> |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
| <br>- |  |      |      |      |      |      |   |      |    |    |   | - |      |   |      |      |      |   |   |   |
|       |  |      |      | <br> |      |      |   |      |    |    |   |   |      |   |      | <br> |      |   |   |   |
|       |  |      | <br> | <br> | <br> |      | _ |      |    |    | _ |   | <br> | _ |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   | _ |
|       |  |      |      |      |      |      | _ |      |    |    | _ |   |      |   | <br> |      | <br> |   |   |   |
| <br>  |  |      |      |      | <br> |      |   |      |    |    |   |   |      |   | <br> |      | <br> |   |   |   |
| <br>  |  |      | <br> | <br> | <br> |      | _ |      |    |    |   |   | <br> |   | <br> | <br> | <br> |   |   |   |
| <br>  |  | <br> | <br> | <br> | <br> | <br> |   |      |    |    |   |   | <br> |   | <br> |      | <br> |   |   |   |
|       |  |      |      |      | <br> |      |   |      |    |    | _ |   |      |   | <br> |      | <br> |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      | <br> |   |   |   |
|       |  |      |      |      | <br> |      |   |      |    |    |   |   |      |   | <br> |      |      |   |   |   |
|       |  |      |      | <br> | <br> |      |   |      |    |    |   |   | <br> |   |      |      |      |   |   |   |
|       |  |      |      |      | <br> |      |   |      |    |    |   |   |      |   | <br> |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
| <br>  |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      | <br> |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    | _ |   |      |   |      |      |      | - |   |   |
| <br>  |  |      |      |      |      |      |   |      |    |    | _ |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      | _ |   |   |
| <br>  |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |
| <br>  |  |      |      |      |      |      |   | Pa   | ge | 12 |   |   |      |   |      |      |      |   | _ |   |
| <br>  |  |      |      |      |      |      |   |      |    |    | _ | - |      |   |      |      |      |   |   |   |
| <br>  |  |      |      |      |      |      |   |      |    |    | _ |   |      |   |      |      |      |   |   |   |
|       |  |      |      |      |      |      |   |      |    |    |   |   |      |   |      |      |      |   |   |   |

 $\bigcirc \begin{array}{c} \mathbf{Problems M-8.5} \quad [3 \text{ points}] \\ (M.O. M11) \end{array}$ 

The state of strain at a point in an aluminum component of the fuse lage of an airplane is measured with a delta strain gauge rosette (See Figure 3, where each gauge is a side of the triangle) of three strain gauges a, b, c arranged at angles  $\alpha_a = 0, \alpha_b = 60, \alpha_c = 120^{\circ}$ . The strain gauges read  $\epsilon_a = 15 \times 10^{-6}, \epsilon_b = 60 \times 10^{-6}, \epsilon_c = 80 \times 10^{-6}$ .



Figure 3: Delta Rosette strain gauge

Determine:

**5.1** (1 point) All the components of strain in cartesian axes  $\mathbf{e}_1, \mathbf{e}_2$  respectively aligned with the horizontal and vertical direction



| 5 | .2 | (1) | ро | int | ) . | I'he p | rın | cıp | al | stra | ain | s $\epsilon$ | I,II | , t. | hei | r d | ire | ctic | ons | $\alpha_{I}$ | ,II |      |  |      |  |  |
|---|----|-----|----|-----|-----|--------|-----|-----|----|------|-----|--------------|------|------|-----|-----|-----|------|-----|--------------|-----|------|--|------|--|--|
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     | <br> |  | <br> |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     | <br> |  | <br> |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  | <br> |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     | <br> |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     | <br> |  | <br> |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     | <br> |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  | <br> |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     | <br> |  | <br> |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     | <br> |  | <br> |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |
|   |    |     |    |     |     |        |     |     |    |      |     |              |      |      |     |     |     |      |     |              |     |      |  |      |  |  |

**5.2** (1 point) The principal strains  $\epsilon_{I,II}$ , their directions  $\alpha_{I,II}$ 

| J | J.J | (1 | po | int | ) - | L HE | 2 11. | lax | .1111 | un | I SI | iea | I S | ua | ms | $\gamma$ | an   | αι | me. | n c | me | ecu | ons | sa | s |      |  |
|---|-----|----|----|-----|-----|------|-------|-----|-------|----|------|-----|-----|----|----|----------|------|----|-----|-----|----|-----|-----|----|---|------|--|
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   | <br> |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   | <br> |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   | <br> |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          | <br> |    |     |     |    |     |     |    |   | <br> |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   | <br> |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   | <br> |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |
|   |     |    |    |     |     |      |       |     |       |    |      |     |     |    |    |          |      |    |     |     |    |     |     |    |   |      |  |

**5.3** (1 point) The maximum shear strains  $\gamma^{max}$  and their directions  $\alpha_s$ 

# 16.001 Unified Engineering: Materials and Structures Fall 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.