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Figure 1: Simply supported beam 
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Figure 2: Cantilever beam 
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Figure 3: Clamped beam 

i Problems M-12.1 [0 points] 
Consider the beams shown in figures 1-4. In all cases, the beams have a length L, a 
rectangular cross section of width b and height h, and are made of a material with 
Young’s modulus E. For the beams with a linear variation in the distributed load, the 
equation describing the load is: 

x 
q(x) = qo (1)

L 

Please do the following for each of the beams: 

1.1 (5 points) State and explain the boundary conditions. 

1.2 (5 points) Obtain the moment(M), shear(S), deflection (w), and slope(w’) distri-
bution along the length of the beam. In each case, try to find the most efficient 
approach, explain which equations you use and why. (hint. Take into account 
of whether or not you can solve for the shear and moment without the use of the 
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moment-curvature relation). Also, state whether the beam is statically determinate 
or statically indeterminate. 

1.3 (5 points) Find the point-wise stress distribution σ11(x, z) along with its maximum 
value and the location it occurs. 

Solution: Beam 1 
Boundary Conditions 

The boundary conditions for this beam are: 

w(0) = 0 

w(L) = 0 

M(0) = 0 

M(L) = −M 

These boundary conditions mean no deflection at either end, that the left sup-
port the beam is free to rotate, and a moment to 

Determining Distributed Fields 

This problem is statically determinate, so the most efficient way to solve this 
problem is to start with the equilibrium equations instead of the fourth order 
ODE governing simple beam theory. Using the equations: 

S0(x) = 0 

M 0(x) = −S(x) 
M 00(x) = 0 

and integrating twice 
M(x) = Ax + B 

applying the two moment boundary conditions. 

B.C. 3 → B = 0 
−M 

B.C. 4 → A = 
L 

Page 3 



16.001, M&S - Fall 2020 Homework #12 

So the equations for Shear and Moment become 

M 
S(x) = 

L 
−M 

M(x) = x 
L 

Next, using the moment-curvature equation find the slope and deflection fields. 

−M 
EIw00(x) = M(x) = x 

L 

Integrating twice yields: � � 
1 −M 3 w(x) = x + Cx + D 
EI 6L 

Applying the BCs 

B.C. 1 → D = 0 
ML 

B.C. 2 → C = 
6 

Thus the slope and deflection equations become � 
3 � 

M x 
w(x) = Lx − 

6EI L� 
2 � 

w 0(x) = 
M

L − 
3x 

6EI L 

Stress Distribution The stress distribution can be given by the equation: 

−M(x)z 
σ11(x, z) = 

I 

Plugging in the equation for the moment 

M 
σ11(x, z) = xz 

LI 

The equation is linear so the maximum value must be at the boundary in the x 
direction. Checking the bounds, the maximum value is: 

h Mh 
(x = L, z = ± ) = ±σ11max 2 2I 
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Solution: Beam 2 
Boundary Conditions 
The boundary conditions for this beam are: 

w(0) = 0 

w 0(0) = 0 

M(L) = 0 

S(L) = 0 

These boundary conditions mean no deflection or rotation at the left end and 
the right end is free to rotate and deflect 

Determining Distributed Fields 
This problem is statically determinate, so the most efficient way to solve this 
problem is to start with the equilibrium equations instead of the fourth order 
ODE governing simple beam theory. Using the equations: 

S 0(x) = q(x) 

M 0(x) = S(x) 

integrating once 
x 

S 0(x) = −q0 
L 
2x 

S(x) = −q0 + A 
2L 

applying the shear BC 4 to solve for A 

q0L 
A = 

2� 
2 � 

q0 x 
S(x) = L − 

2 L 

integrating again and applying BC 3 � 
2 � 

M 0(x) = 
q0 x − L � 

3 

2 L � 
q0 x 

M(x) = − Lx + B 
2 3L 

q0L
2 

BC 3 → B = � 
3 

3 � 
L2 

M(x) = q0 − x + 
x L 
6L 2 3 
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Next, using the moment-curvature equation find the slope and deflection fields. � 
3 � 

L2 

EIw00(x) = M(x) = q0 − x + 
x L 
6L 2 3 

Integrating twice yields: � 
5 � 

L2 

w(x) = − x 3 + x 2 + Cx + D
q0 x L 
EI 120L 12 6 

Applying the BCs 

B.C. 1 → D = 0 

B.C. 2 → C = 0 

Thus the slope and deflection equations become � 
5 � 

q0 x L 3 L2
2 w(x) = − x + x 

EI 120L 12 6� 
4 � 

L2q0 x L 
w 0(x) = − x 2 + x 

EI 24 4 3 

Stress Distribution 

Next, plugging in our equation for the moment into the stress relation � 
3 � 

L2 

σ11(x, z) = − x + 
−q0z x L 
I 6L 2 3 

The equation has local maximum/minimums at x = ±L. Since there are no 
local max/mins inside the domain of the beam we just need to check the values 
at the boundaries. Doing this will yield: 

h  q0hL2 

(x = 0, z = ± ) =σ11max 2 6I 

Solution: Beam 3 
Boundary Conditions 
The boundary conditions for this beam are: 

w(0) = 0 

w 0(0) = 0 

w(L) = 0 

w 0(L) = 0 
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These boundary conditions mean no deflection or rotation at either end of the 
beam 

Determining Distributed Fields 
This problem is statically indeterminate, so the most efficient way to solve this 
problem is to start with the fourth order ODE governing simple beam theory: 

x 
EIw0000(x) = q(x) = q0 

L 

Integrating 4 times to get the general form of the solution for w(x) 

5 3 2x x x 
EIw(x) = q0 + A + B + Cx + D 

120L 6 2 

Applying the boundary conditions 

BC 1 → D = 0 

BC 2 → C = 0 

−3Lq0 L2q0
BC 3 & 4 → A = , B = 

20 30 

Thus the equations for deflection, slope, moment, and shear become: � � 
L2 

w(x) = − x 3 + x 2
q0 x5 3L 
EI 120L 120 60� 

4 � 
L2q0 

w 0(x) = 
x − 

3L
x 2 + x 

EI 24L 40 30� 
3 � 

L2 

M(x) = EIw00(x) = q0 − x + 
x 3L 
6L 20 30� 

2 � 
3L x 

S(x) = −M 0(x) = q0 − 
20 2L 

Stress Distribution 
Next, plugging in our equation for the moment into the stress relation � 

3 � 
L2 

σ11(x, z) = − x + 
−q0z x 3L 
I 6L 20 30 q 

The equation has local maximum/minimums at x = ± 
20
6 L. The location x q 

= 
20
6 L is within the domain, so the value there needs to be compared to the 

bounds. Doing this will yield: 

h  q0hL2 

(x = L, z = ± ) =σ11max 2 40I 
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Solution: Beam 4 
Boundary Conditions 

The boundary conditions for this beam are: 

w(0) = 0 

w 0(0) = 0 

w 0(L) = 0 

S(x) = 0 

These boundary conditions mean no deflection or rotation at the the left end, 
no rotation at the right end, and the beam being free to deflect at the right end. 

Determining Distributed Fields 

This problem is statically indeterminate, so the most efficient way to solve this 
problem is to start with the fourth order ODE governing simple beam theory: 

EIw0000(x) = q(x) = −q0 

Integrating 4 times to get the general form of the solution for w(x) 

3 2q0 x x 
EIw(x) = − x 4 + A + B + Cx + D 

24 6 2 

Applying the boundary conditions 

BC 1 → D = 0 

BC 2 → C = 0 

BC 4 → A = q0L 

L2q0
BC 3 → B = − 

3 

Thus the equations for deflection, slope, moment, and shear become: � � 
L2 

w(x) = + x 3 − x 
q0 −x4 L 2 

EI 24 6 6� 
3 � 

q0 −x Lx2 L2 

w 0(x) = + − x 
EI 6 2 3� 

2 � 
L2 

M(x) = EIw00(x) = q0 + Lx − 
−x 
2 3 

S(x) = M 0(x) = q0(x − L) 

Stress Distribution 
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Next, plugging in our equation for the moment into the stress relation � 
2 � 

L2−q0z −x 
σ11(x, z) = + Lx − 

I 2 3 

The equation has local maximum/minimums at x = L. Since there are no local 
max/mins inside the domain of the beam we just need to check the values at 
the boundaries. Doing this will yield: 

h ±q0hL2 

(x = 0, z = ± ) =σ11max 2 6I 
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i Problems M-12.2 [0 points] 
The built-in beam shown in Figure 5 has a length L, and bending stiffness EI. 

A

B

x

y

L

δ

Figure 5: built-in beam subject to end deflection δ 
. 

2.1 (10 points) Write down the equations governing the distribution of the following 
functions: deflection u(x), bending moment M(x) and shear S(x). Indicate what 
principle each equation represents. Show that you can combine these equations to 
obtain a single ordinary differential equation governing beam bending which reads 
as follows: 

EIu(IV )(x) = 0 

Solution: 

equilibrium of moments: M 0 + S = 0 

equilibrium of transverse forces: S0 + q = 0 

compatibility and constitutive law: M = EIu00 

Combine the three, use q = 0 to obtain sought result. 

2.2 (20 points) Write down the boundary conditions for this problem and use them to 
find the solution for the deflection of the beam u(x), the moment M(x) and the 
shear S(x). You should obtain the following result: 

� x �2 
� 

2x 
� 

u(x) = δ 3 − 
L L h i6δ x x 

u 0(x) = (1 − )
L L L 

6δ 2x 
M(x) = EI (1 − )

L2 L 
EI 

S(x) = −M 0(x) = 12δ 
L3 

Page 10 



16.001, M&S - Fall 2020 Homework #12 

Solution: The boundary conditions for this problem are 

u(0) = u 0(0) = u 0(L) = 0 

u(L) = δ 

Integration of the governing equation 

EIu000(x) = C 

EIu00(x) = Cx + D 
2x 

EIu0(x) = C + Dx + F 
2 
3 2x x 

EIu(x) = C + D + Fx + G 
6 2 

Applying the boundary conditions 

u 0(0) = 0 → F = 0 

u(0) = 0 → G = 0 
CL 6δEI 

u 0(L) = 0 → D = − = 
L2 

−12δEI 
2 

u(L) = δ → C = 
L3 

Substituting the integration coefficients back into the equation for the deflection 
field � �� �2x 2x 

u(x) = δ 3 − 
L L h i6δ x x 

u 0(x) = (1 − )
L L L 

6δ 2x 
M(x) = EI (1 − )

L2 L 
EI 

S(x) = −M 0(x) = 12δ 
L3 

2.3 (5 points) Interpret the result. Specifically, explain the shape of the shear and 
moment distributions. 

Solution: A vertical reaction will appear at x = L to support the imposed 
displacement δ. There is no q to modify this shear, thus the shear is constant. 
The reaction at x = 0 will point down. Both reactions will cause a moment. 
The change of curvature indicates the signs of the moments at the extreme ends. 
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There will be no curvature and thus no moment at x = L/2, etc. 

2.4 (5 points) In the rest of this problem, we will explore how to obtain the same 
solution by exploiting the principle of superposition. Below, you are given the 
solution fields for various statically-determinate beams. 

Choose and adequate subset of those solutions that you could combine to obtain 
the solution to the problem above. State and justify your choices. 

Solution: One possible combination is solutions 1 and 3 from the appendix. 
Solution 1 satisfies all the boundary conditions of our problem except that it 
violates the zero-rotation BC at x = L. Solution 3 satisfies the BCs at x = 
0, gives the possibility to create an arbitrary rotation that could cancel the 
undesirable rotation at x = L in solution 1, by proper selection of the moment 
M0. 

2.5 (5 points) Explain the procedure by which you will use superposition to obtain the 
solution to the indeterminate problem using the two determinate problems 

Solution: 

• Find the value of M0 that would eliminate the spurious rotation of solution 
1 at x = L 

• Use this value in solution 2 and add up the two solutions to obtain the 
desired result 

2.6 (20 points) Execute the procedure and show that you obtain the same result as in 
Part (2) 

Solution: 

0 1 0 3 u 0(L) = 0 = u O(L, δ) + u O(L, M0) 
δ 3 1 M0L 

L2 = 0 = + 
L3 2 4 EI 
EI → M0 = −6δ 
L2 

Substituting this value for M0 into the deflection field for solution 3 and add it 
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to the deflection field of solution 1 to get the final deflection field. 

EI 1 3 u(x) = u O(x; δ) + u O(x; M0 = −6δ )
L2� � 

1 x x 6δEI 1 x 
= δ( )2(3 − ) + − x 2( − 1)

L2 � �2 h i 
2 L L 4EI L 

x x 
= δ 3 − 2 

L L 

Once again, from the deflection field you can obtain the rotation, moment, and 
shear fields, which are: h i6δ x x 

u 0(x) = (1 − )
L L L 

6δ 2x 
M(x) = EI (1 − )

L2 L 
EI 

S(x) = −M 0(x) = 12δ 
L3 
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1) 
x

z

L

δ

u(x) = − 
3δ 
L3 

� 
x3 

6 
− 

Lx2 

2 

� 

u 0(x) = 
δ 
L3 

� 

− 
3 
2 
x 2 + 3Lx 

� 

M(x) = 
3EIδ 
L3 

[L − x] 

S(x) = 
3EIδ 
L3 

2) 
x

L

M0

u(x) = 
M0L

2 

6EI 
( 
x 
L
) 
h 
( 
x 
L
)2 − 1 

i 

u 0(x) = 
MoL 
EI 

� 
1 
2
( 
x 
L
)2 − 

1 
6 

� 

M(x) = 
M0x 
L 

S(x) = − 
M0 

L 

3) 
x

L

M0

u(x) = 
M0 

4EI 
x 2( 

x 
L 
− 1) 

u 0(x) = 
M0 

4EI 

� 
3x2 

L 
− 2x 

� 

M(x) = 
M0 

2 

� 
3x 
L 
− 1 

� 

S(x) = − 
3M0 

2L 

4) 
x

L
P

u(x) = 
P x2(3L − x) 

6EI 

u 0(x) = 
P x(2L − x) 

2EI 

M(x) = P (L − x) 

S(x) = P 

5) 
x

L

M0

u(x) = 
M0 

2EI 
x 2 

u 0(x) = 
M0 

EI 
x 

M(x) = M0 

S(x) = 0 
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i Problems M-12.3 [30 points] 
Consider the beams shown in Figures 6-8. The beams have a constant Young’s Modulus 
E, moment of inertia I, width b, and height h. Obtain the following: 

3.1 (10 points) The beam deflection distribution u(x) 

3.2 (10 points) The internal bending moment distribution M(x) 

3.3 (10 points) The internal shear force distribution S(x) 

First, complete the above analysis by integration of the governing equations for beam 
theory. 

Next, solve this problem through the use of linear superposition. A number of potentially 
useful solutions to statically-determinate problems are provided. Explain the process and 
the solutions you chose to combine for each beam. 
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Table 1: solutions to statically-determinate beam problems 

1) 
x

L

p0
u(x) = 

p0 (L
3x − 2Lx3 + x4) 

24EI 

u 0(x) = 
p0 (L

3 − 6Lx2 + 4x3) 
24EI 

M(x) = 
1 
2 

� 
p0x 2 − Lp0x 

� 

S(x) = 
1 
2
p0(L − 2x) 

2) 
x

L

M0

u(x) = 
M0L

2 

6EI 
( 
x 
L
) 
h 
( 
x 
L
)2 − 1 

i 

u 0(x) = 
MoL 
EI 

� 
1 
2
( 
x 
L
)2 − 

1 
6 

� 

M(x) = 
M0x 
L 

S(x) = − 
M0 

L 

3) 
x

L

p0 u(x) = 
p0x

2 (6L2 − 4Lx + x2) 
24EI 

u 0(x) = 
p0x (3L2 − 3Lx + x2) 

6EI 

M(x) = 
1 
2
p0(L − x)2 

S(x) = p0(L − x) 

4) 
x

L
P

u(x) = 
P x2(3L − x) 

6EI 

u 0(x) = 
P x(2L − x) 

2EI 

M(x) = P (L − x) 

S(x) = P 

5) 
x

L

M0

u(x) = 
M0 

2EI 
x 2 

u 0(x) = 
M0 

EI 
x 

M(x) = M0 

S(x) = 0 
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i Problems M-12.4 [20 points] 
Buckling vs yielding 

4.1 (20 points) A column has a length L and a constant rectangular cross-section of 
dimensions a = 0.1 m in the x2-direction and b = 0.2 m in the x3-direction. It is 
made of a material with E = 70 GPa and σy = 100 MPa. The column is clamped 
at x1 = 0. At x1 = L, it is constrained differently in the x2 - and x3-directions 
and loaded by a force P as shown in Figure 9. Specifically, in the x2 plane, the 
deflection and its derivative are constrained to be zero, while in the x3 plane both 
are unconstrained. Compute the buckling load in the second case of buckling in the 
x3 plane and compare your results with buckling failure in the other plane and the 
possibility of column failure occuring due to yielding. An analysis of the x2 plane 
is included below for convenience. 

P

L

x1

x2

P

L

x1

x3

Figure 9: Column constrained differently in the x2 - and x3-directions at x1 = L. 

Determine the maximum value for the length L of the column to guarantee that it 
will not fail by buckling. 

The corresponding fourth-order ODE for the deflection ū 2(x1) is 

0000 00EI33ū 2 (x1) + Pū 2(x1) = p2(x1) = 0. 

For buckling in this direction, the boundary conditions are: 

ū 2(0) = 0 

ū 2 
0 (0) = 0 

ū 2(L) = 0 

ū 2 
0 (L) = 0 
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Now, apply these boundary conditions and determine the condition on the load P for 
which the beam can be in equilibrium in a we have adeformed configuration, (i.e. 

non-trivial solution ū 2(x1) 6= 0). Also, let’s define k = 
EI 
P 
33 
. 

For ū 2(x1 = 0) = 0: 

ū 2(x1 = 0) = A sin(0) + B cos(0) + 0 + D 

= B + D = 0 

For ū 2 
0 (x1 = 0) = 0: 

q 

0 −¯ ( 0) kA cos(0) kB sin(0) + Cu x = = 12 

= kA + C = 0 

For ū 2(x1 = L) = 0: 

ū 2 
000(x1 = L) = A cos(kL) + B sin(kL) + CL + D = 0 

For ū0 
2(x1 = L) = 0: 

ū 2 
0 (x1 = L) = kA cos(kL) − kB sin(kL) + C = 0 

⎤⎡ 
0 1 0 1 
k 0 1 0 

sin(kL) cos(kL) L 1 

⎧ ⎪⎨ 

⎫ ⎪⎬ 

⎧ ⎪⎨ 

⎫ ⎪⎬ 
= 

⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎦ 

0 A 
0 B 
0 C⎪⎩ ⎪⎭ ⎪⎩ ⎪⎭
0 D 

k cos(kL) −k sin(kL) 1 0 

For a non-trivial solution (i.e. ū 2(x1) 6= 0), 

⎧ ⎪⎨ 

⎧ ⎪⎨ 

⎫ ⎪⎬ 

⎫ ⎪⎬A 0 
B 0 6 ,= 
C 0⎪⎩ ⎪⎩⎪⎭ ⎪⎭
D 0 

which requires the matrix to be singular, i.e. its determinant must vanish. Let’s call 
this matrix H. 
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det(H) = 0 = 2k − 2k cos(kL) − k2L sin(kL) 

For the non-trivial case, we must look at the loading conditions that cause this determi-
nant to be zero as is done in the course lecture slides. For the second case of buckling in 
the other plane, the proceedure is similar but there are different boundary conditions on 
the position x1 = L. In particular, in the x3 plane there is nothing touching the column 
at x1 = L so there cannot be any moments or shear at the end. 

As we have seen in the course the smallest buckling load is given by 

4π2EI 
Pcr = 

L2 

Here the inertia is with respect to the plane of buckling. Perform a similar analysis for 
the other plane, then compare the critical buckling loads with the analysis given here 
and with the conditions for failure due to yielding. 
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