16.001 - Materials \& Structures Problem Set \#12

Instructors:
Raúl Radovitzky
Zachary Cordero
Teaching Assistants: Grégoire Chomette
Michelle Xu
Daniel Pickard

Department of Aeronautics \& Astronautics

 M.I.T.| Question | Points |
| :---: | :---: |
| 1 | 0 |
| 2 | 0 |
| 3 | 30 |
| 4 | 20 |
| Total: | 50 |

Figure 1: Simply supported beam

Figure 2: Cantilever beam

Figure 3: Clamped beam

Problems M-12.1 [0 points]
Consider the beams shown in figures 1-4. In all cases, the beams have a length L, a rectangular cross section of width b and height h, and are made of a material with Young's modulus E. For the beams with a linear variation in the distributed load, the equation describing the load is:

$$
\begin{equation*}
q(x)=q_{o} \frac{x}{L} \tag{1}
\end{equation*}
$$

Please do the following for each of the beams:
1.1 (5 points) State and explain the boundary conditions.
1.2 (5 points) Obtain the moment(M), shear(S), deflection (w), and slope(w') distribution along the length of the beam. In each case, try to find the most efficient approach, explain which equations you use and why. (hint. Take into account of whether or not you can solve for the shear and moment without the use of the

Figure 4
moment-curvature relation). Also, state whether the beam is statically determinate or statically indeterminate.
1.3 (5 points) Find the point-wise stress distribution $\sigma_{11}(x, z)$ along with its maximum value and the location it occurs.

Solution: Beam 1

Boundary Conditions

The boundary conditions for this beam are:

$$
\begin{aligned}
w(0) & =0 \\
w(L) & =0 \\
M(0) & =0 \\
M(L) & =-M
\end{aligned}
$$

These boundary conditions mean no deflection at either end, that the left support the beam is free to rotate, and a moment to

Determining Distributed Fields

This problem is statically determinate, so the most efficient way to solve this problem is to start with the equilibrium equations instead of the fourth order ODE governing simple beam theory. Using the equations:

$$
\begin{aligned}
S^{\prime}(x) & =0 \\
M^{\prime}(x) & =-S(x) \\
M^{\prime \prime}(x) & =0
\end{aligned}
$$

and integrating twice

$$
M(x)=A x+B
$$

applying the two moment boundary conditions.
B.C. $3 \rightarrow B=0$
B.C. $4 \rightarrow A=\frac{-M}{L}$

So the equations for Shear and Moment become

$$
\begin{aligned}
S(x) & =\frac{M}{L} \\
M(x) & =\frac{-M}{L} x
\end{aligned}
$$

Next, using the moment-curvature equation find the slope and deflection fields.

$$
E I w^{\prime \prime}(x)=M(x)=\frac{-M}{L} x
$$

Integrating twice yields:

$$
w(x)=\frac{1}{E I}\left[\frac{-M}{6 L} x^{3}+C x+D\right]
$$

Applying the BCs

$$
\begin{aligned}
& \text { B.C. } 1 \rightarrow D=0 \\
& \text { B.C. } 2 \rightarrow C=\frac{M L}{6}
\end{aligned}
$$

Thus the slope and deflection equations become

$$
\begin{aligned}
w(x) & =\frac{M}{6 E I}\left[L x-\frac{x^{3}}{L}\right] \\
w^{\prime}(x) & =\frac{M}{6 E I}\left[L-\frac{3 x^{2}}{L}\right]
\end{aligned}
$$

Stress Distribution The stress distribution can be given by the equation:

$$
\sigma_{11}(x, z)=\frac{-M(x) z}{I}
$$

Plugging in the equation for the moment

$$
\sigma_{11}(x, z)=\frac{M}{L I} x z
$$

The equation is linear so the maximum value must be at the boundary in the x direction. Checking the bounds, the maximum value is:

$$
\sigma_{11_{\max }}\left(x=L, z= \pm \frac{h}{2}\right)= \pm \frac{M h}{2 I}
$$

Solution: Beam 2

Boundary Conditions

The boundary conditions for this beam are:

$$
\begin{aligned}
w(0) & =0 \\
w^{\prime}(0) & =0 \\
M(L) & =0 \\
S(L) & =0
\end{aligned}
$$

These boundary conditions mean no deflection or rotation at the left end and the right end is free to rotate and deflect

Determining Distributed Fields

This problem is statically determinate, so the most efficient way to solve this problem is to start with the equilibrium equations instead of the fourth order ODE governing simple beam theory. Using the equations:

$$
\begin{aligned}
S^{\prime}(x) & =q(x) \\
M^{\prime}(x) & =S(x)
\end{aligned}
$$

integrating once

$$
\begin{aligned}
S^{\prime}(x) & =-q_{0} \frac{x}{L} \\
S(x) & =-q_{0} \frac{x^{2}}{2 L}+A
\end{aligned}
$$

applying the shear BC 4 to solve for A

$$
\begin{aligned}
A & =\frac{q_{0} L}{2} \\
S(x) & =\frac{q_{0}}{2}\left[L-\frac{x^{2}}{L}\right]
\end{aligned}
$$

integrating again and applying BC 3

$$
\begin{array}{r}
M^{\prime}(x)=\frac{q_{0}}{2}\left[\frac{x^{2}}{L}-L\right] \\
M(x)=\frac{q_{0}}{2}\left[\frac{x^{3}}{3 L}-L x\right]+B \\
B C 3 \rightarrow B=\frac{q_{0} L^{2}}{3} \\
M(x)=q_{0}\left[\frac{x^{3}}{6 L}-\frac{L}{2} x+\frac{L^{2}}{3}\right]
\end{array}
$$

Next, using the moment-curvature equation find the slope and deflection fields.

$$
E I w^{\prime \prime}(x)=M(x)=q_{0}\left[\frac{x^{3}}{6 L}-\frac{L}{2} x+\frac{L^{2}}{3}\right]
$$

Integrating twice yields:

$$
w(x)=\frac{q_{0}}{E I}\left[\frac{x^{5}}{120 L}-\frac{L}{12} x^{3}+\frac{L^{2}}{6} x^{2}\right]+C x+D
$$

Applying the BCs

$$
\begin{aligned}
& \text { B.C. } 1 \rightarrow D=0 \\
& B . C .2 \rightarrow C=0
\end{aligned}
$$

Thus the slope and deflection equations become

$$
\begin{aligned}
w(x) & =\frac{q_{0}}{E I}\left[\frac{x^{5}}{120 L}-\frac{L}{12} x^{3}+\frac{L^{2}}{6} x^{2}\right] \\
w^{\prime}(x) & =\frac{q_{0}}{E I}\left[\frac{x^{4}}{24}-\frac{L}{4} x^{2}+\frac{L^{2}}{3} x\right]
\end{aligned}
$$

Stress Distribution

Next, plugging in our equation for the moment into the stress relation

$$
\sigma_{11}(x, z)=\frac{-q_{0} z}{I}\left[\frac{x^{3}}{6 L}-\frac{L}{2} x+\frac{L^{2}}{3}\right]
$$

The equation has local maximum/minimums at $\mathrm{x}= \pm L$. Since there are no local max/mins inside the domain of the beam we just need to check the values at the boundaries. Doing this will yield:

$$
\sigma_{11_{\max }}\left(x=0, z= \pm \frac{h}{2}\right)=\frac{\mp q_{0} h L^{2}}{6 I}
$$

Solution: Beam 3

Boundary Conditions

The boundary conditions for this beam are:

$$
\begin{aligned}
w(0) & =0 \\
w^{\prime}(0) & =0 \\
w(L) & =0 \\
w^{\prime}(L) & =0
\end{aligned}
$$

These boundary conditions mean no deflection or rotation at either end of the beam

Determining Distributed Fields

This problem is statically indeterminate, so the most efficient way to solve this problem is to start with the fourth order ODE governing simple beam theory:

$$
E I w^{\prime \prime \prime \prime}(x)=q(x)=q_{0} \frac{x}{L}
$$

Integrating 4 times to get the general form of the solution for $\mathrm{w}(\mathrm{x})$

$$
E I w(x)=q_{0} \frac{x^{5}}{120 L}+A \frac{x^{3}}{6}+B \frac{x^{2}}{2}+C x+D
$$

Applying the boundary conditions

$$
\left.\begin{array}{rl}
B C 1 \rightarrow D & =0 \\
B C 2 & \rightarrow C
\end{array}\right)=0 .
$$

Thus the equations for deflection, slope, moment, and shear become:

$$
\begin{aligned}
w(x) & =\frac{q_{0}}{E I}\left[\frac{x^{5}}{120 L}-\frac{3 L}{120} x^{3}+\frac{L^{2}}{60} x^{2}\right] \\
w^{\prime}(x) & =\frac{q_{0}}{E I}\left[\frac{x^{4}}{24 L}-\frac{3 L}{40} x^{2}+\frac{L^{2}}{30} x\right] \\
M(x) & =E I w^{\prime \prime}(x)=q_{0}\left[\frac{x^{3}}{6 L}-\frac{3 L}{20} x+\frac{L^{2}}{30}\right] \\
S(x) & =-M^{\prime}(x)=q_{0}\left[\frac{3 L}{20}-\frac{x^{2}}{2 L}\right]
\end{aligned}
$$

Stress Distribution

Next, plugging in our equation for the moment into the stress relation

$$
\sigma_{11}(x, z)=\frac{-q_{0} z}{I}\left[\frac{x^{3}}{6 L}-\frac{3 L}{20} x+\frac{L^{2}}{30}\right]
$$

The equation has local maximum/minimums at $\mathrm{x}= \pm \sqrt{\frac{6}{20}} L$. The location x $=\sqrt{\frac{6}{20}} L$ is within the domain, so the value there needs to be compared to the bounds. Doing this will yield:

$$
\sigma_{11_{\max }}\left(x=L, z= \pm \frac{h}{2}\right)=\frac{\mp q_{0} h L^{2}}{40 I}
$$

Solution: Beam 4

Boundary Conditions

The boundary conditions for this beam are:

$$
\begin{aligned}
w(0) & =0 \\
w^{\prime}(0) & =0 \\
w^{\prime}(L) & =0 \\
S(x) & =0
\end{aligned}
$$

These boundary conditions mean no deflection or rotation at the the left end, no rotation at the right end, and the beam being free to deflect at the right end.

Determining Distributed Fields

This problem is statically indeterminate, so the most efficient way to solve this problem is to start with the fourth order ODE governing simple beam theory:

$$
E I w^{\prime \prime \prime \prime}(x)=q(x)=-q_{0}
$$

Integrating 4 times to get the general form of the solution for $\mathrm{w}(\mathrm{x})$

$$
\operatorname{EIw}(x)=-\frac{q_{0}}{24} x^{4}+A \frac{x^{3}}{6}+B \frac{x^{2}}{2}+C x+D
$$

Applying the boundary conditions

$$
\begin{aligned}
& B C 1 \rightarrow D=0 \\
& B C 2 \rightarrow C=0 \\
& B C 4 \rightarrow A=q_{0} L \\
& B C 3 \rightarrow B=-\frac{L^{2} q_{0}}{3}
\end{aligned}
$$

Thus the equations for deflection, slope, moment, and shear become:

$$
\begin{aligned}
w(x) & =\frac{q_{0}}{E I}\left[\frac{-x^{4}}{24}+\frac{L}{6} x^{3}-\frac{L^{2}}{6} x^{2}\right] \\
w^{\prime}(x) & =\frac{q_{0}}{E I}\left[\frac{-x^{3}}{6}+\frac{L x^{2}}{2}-\frac{L^{2}}{3} x\right] \\
M(x) & =E I w^{\prime \prime}(x)=q_{0}\left[\frac{-x^{2}}{2}+L x-\frac{L^{2}}{3}\right] \\
S(x) & =M^{\prime}(x)=q_{0}(x-L)
\end{aligned}
$$

Stress Distribution

Next, plugging in our equation for the moment into the stress relation

$$
\sigma_{11}(x, z)=\frac{-q_{0} z}{I}\left[\frac{-x^{2}}{2}+L x-\frac{L^{2}}{3}\right]
$$

The equation has local maximum/minimums at $x=L$. Since there are no local max/mins inside the domain of the beam we just need to check the values at the boundaries. Doing this will yield:

$$
\sigma_{11_{\max }}\left(x=0, z= \pm \frac{h}{2}\right)=\frac{ \pm q_{0} h L^{2}}{6 I}
$$Problems M-12.2 [0 points]

The built-in beam shown in Figure 5 has a length L, and bending stiffness EI.

Figure 5: built-in beam subject to end deflection δ
2.1 (10 points) Write down the equations governing the distribution of the following functions: deflection $u(x)$, bending moment $M(x)$ and shear $S(x)$. Indicate what principle each equation represents. Show that you can combine these equations to obtain a single ordinary differential equation governing beam bending which reads as follows:

$$
E I u^{(I V)}(x)=0
$$

Solution:

> equilibrium of moments: $M^{\prime}+S=0$
> equilibrium of transverse forces: $S^{\prime}+q=0$ compatibility and constitutive law: $M=E I u^{\prime \prime}$

Combine the three, use $q=0$ to obtain sought result.
2.2 (20 points) Write down the boundary conditions for this problem and use them to find the solution for the deflection of the beam $u(x)$, the moment $M(x)$ and the shear $S(x)$. You should obtain the following result:

$$
\begin{aligned}
u(x) & =\delta\left(\frac{x}{L}\right)^{2}\left[3-\frac{2 x}{L}\right] \\
u^{\prime}(x) & =\frac{6 \delta}{L}\left[\frac{x}{L}\right]\left(1-\frac{x}{L}\right) \\
M(x) & =E I \frac{6 \delta}{L^{2}}\left(1-\frac{2 x}{L}\right) \\
S(x) & =-M^{\prime}(x)=12 \delta \frac{E I}{L^{3}}
\end{aligned}
$$

Solution: The boundary conditions for this problem are

$$
\begin{gathered}
u(0)=u^{\prime}(0)=u^{\prime}(L)=0 \\
u(L)=\delta
\end{gathered}
$$

Integration of the governing equation

$$
\begin{aligned}
E I u^{\prime \prime \prime}(x) & =C \\
E I u^{\prime \prime}(x) & =C x+D \\
E I u^{\prime}(x) & =C \frac{x^{2}}{2}+D x+F \\
E I u(x) & =C \frac{x^{3}}{6}+D \frac{x^{2}}{2}+F x+G
\end{aligned}
$$

Applying the boundary conditions

$$
\begin{aligned}
u^{\prime}(0) & =0 \rightarrow F=0 \\
u(0) & =0 \rightarrow G=0 \\
u^{\prime}(L) & =0 \rightarrow D=-\frac{C L}{2}=\frac{6 \delta E I}{L^{2}} \\
u(L) & =\delta \rightarrow C=\frac{-12 \delta E I}{L^{3}}
\end{aligned}
$$

Substituting the integration coefficients back into the equation for the deflection field

$$
\begin{aligned}
u(x) & =\delta\left(\frac{x}{L}\right)^{2}\left[3-\frac{2 x}{L}\right] \\
u^{\prime}(x) & =\frac{6 \delta}{L}\left[\frac{x}{L}\right]\left(1-\frac{x}{L}\right) \\
M(x) & =E I \frac{6 \delta}{L^{2}}\left(1-\frac{2 x}{L}\right) \\
S(x) & =-M^{\prime}(x)=12 \delta \frac{E I}{L^{3}}
\end{aligned}
$$

2.3 (5 points) Interpret the result. Specifically, explain the shape of the shear and moment distributions.

Solution: A vertical reaction will appear at $x=L$ to support the imposed displacement δ. There is no q to modify this shear, thus the shear is constant. The reaction at $x=0$ will point down. Both reactions will cause a moment. The change of curvature indicates the signs of the moments at the extreme ends.

There will be no curvature and thus no moment at $x=L / 2$, etc.
2.4 (5 points) In the rest of this problem, we will explore how to obtain the same solution by exploiting the principle of superposition. Below, you are given the solution fields for various statically-determinate beams.
Choose and adequate subset of those solutions that you could combine to obtain the solution to the problem above. State and justify your choices.

Solution: One possible combination is solutions 1 and 3 from the appendix. Solution 1 satisfies all the boundary conditions of our problem except that it violates the zero-rotation BC at $x=L$. Solution 3 satisfies the BCs at $x=$ 0 , gives the possibility to create an arbitrary rotation that could cancel the undesirable rotation at $x=L$ in solution 1 , by proper selection of the moment M_{0}.
2.5 (5 points) Explain the procedure by which you will use superposition to obtain the solution to the indeterminate problem using the two determinate problems

Solution:

- Find the value of M_{0} that would eliminate the spurious rotation of solution 1 at $x=L$
- Use this value in solution 2 and add up the two solutions to obtain the desired result
2.6 (20 points) Execute the procedure and show that you obtain the same result as in Part (2)

Solution:

$$
\begin{aligned}
u^{\prime}(L) & =0=u^{(1)}(L, \delta)+u^{(3)}\left(L, M_{0}\right) \\
& =0=\frac{\delta}{L^{3}} \frac{3}{2} L^{2}+\frac{1}{4} \frac{M_{0} L}{E I} \\
\rightarrow M_{0} & =-6 \delta \frac{E I}{L^{2}}
\end{aligned}
$$

Substituting this value for M_{0} into the deflection field for solution 3 and add it
to the deflection field of solution 1 to get the final deflection field.

$$
\begin{aligned}
u(x) & =u^{(1)}(x ; \delta)+u^{3}\left(x ; M_{0}=-6 \delta \frac{E I}{L^{2}}\right) \\
& =\frac{1}{2} \delta\left(\frac{x}{L}\right)^{2}\left(3-\frac{x}{L}\right)+\left(-\frac{6 \delta E I}{L^{2}}\right) \frac{1}{4 E I} x^{2}\left(\frac{x}{L}-1\right) \\
& =\delta\left(\frac{x}{L}\right)^{2}\left[3-2 \frac{x}{L}\right]
\end{aligned}
$$

Once again, from the deflection field you can obtain the rotation, moment, and shear fields, which are:

$$
\begin{aligned}
u^{\prime}(x) & =\frac{6 \delta}{L}\left[\frac{x}{L}\right]\left(1-\frac{x}{L}\right) \\
M(x) & =E I \frac{6 \delta}{L^{2}}\left(1-\frac{2 x}{L}\right) \\
S(x) & =-M^{\prime}(x)=12 \delta \frac{E I}{L^{3}}
\end{aligned}
$$

Page 14

Figure 6

Figure 7

Figure 8

Problems M-12.3 [30 points]
Consider the beams shown in Figures 6-8. The beams have a constant Young's Modulus E, moment of inertia I, width b, and height h. Obtain the following:
3.1 (10 points) The beam deflection distribution $u(x)$
3.2 (10 points) The internal bending moment distribution $M(x)$
3.3 (10 points) The internal shear force distribution $S(x)$

First, complete the above analysis by integration of the governing equations for beam theory.

Next, solve this problem through the use of linear superposition. A number of potentially useful solutions to statically-determinate problems are provided. Explain the process and the solutions you chose to combine for each beam.

Table 1: solutions to statically-determinate beam problems

1)		$\begin{aligned} & u(x)=\frac{p_{0}\left(L^{3} x-2 L x^{3}+x^{4}\right)}{24 E I} \\ & \hline u^{\prime}(x)=\frac{p_{0}\left(L^{3}-6 L x^{2}+4 x^{3}\right)}{24 E I} \\ & M(x)=\frac{1}{2}\left(p_{0} x^{2}-L p_{0} x\right) \\ & S(x)=\frac{1}{2} p_{0}(L-2 x) \end{aligned}$
2)		$\begin{aligned} & u(x)=\frac{M_{0} L^{2}}{6 \mathrm{EI}}\left(\frac{x}{L}\right)\left[\left(\frac{x}{L}\right)^{2}-1\right] \\ & u^{\prime}(x)=\frac{M_{o} L}{\mathrm{EI}}\left[\frac{1}{2}\left(\frac{x}{L}\right)^{2}-\frac{1}{6}\right] \\ & M(x)=\frac{M_{0} x}{L} \\ & S(x)=-\frac{M_{0}}{L} \end{aligned}$
3)		$\begin{aligned} & u(x)=\frac{p_{0} x^{2}\left(6 L^{2}-4 L x+x^{2}\right)}{24 \mathrm{EI}} \\ & \hline u^{\prime}(x)=\frac{p_{0} x\left(3 L^{2}-3 L x+x^{2}\right)}{6 \mathrm{EI}} \\ & M(x)=\frac{1}{2} p_{0}(L-x)^{2} \\ & S(x)=p_{0}(L-x) \end{aligned}$
4)		$\begin{aligned} & u(x)=\frac{P x^{2}(3 L-x)}{6 \mathrm{EI}} \\ & u^{\prime}(x)=\frac{P x(2 L-x)}{2 \mathrm{EI}} \\ & \hline M(x)=P(L-x) \\ & \hline S(x)=P \end{aligned}$
5)		$u(x)=\frac{M_{0}}{2 \mathrm{EI}} x^{2}$ $u^{\prime}(x)=\frac{M_{0}}{\mathrm{EI}} x$ $M(x)=M_{0}$ $S(x)=0$

Problems M-12.4 [20 points]

Buckling vs yielding
4.1 (20 points) A column has a length L and a constant rectangular cross-section of dimensions $a=0.1 \mathrm{~m}$ in the x_{2}-direction and $b=0.2 \mathrm{~m}$ in the x_{3}-direction. It is made of a material with $E=70 \mathrm{GPa}$ and $\sigma_{y}=100 \mathrm{MPa}$. The column is clamped at $x_{1}=0$. At $x_{1}=L$, it is constrained differently in the x_{2} - and x_{3}-directions and loaded by a force P as shown in Figure 9. Specifically, in the x_{2} plane, the deflection and its derivative are constrained to be zero, while in the x_{3} plane both are unconstrained. Compute the buckling load in the second case of buckling in the x_{3} plane and compare your results with buckling failure in the other plane and the possibility of column failure occuring due to yielding. An analysis of the x_{2} plane is included below for convenience.

Figure 9: Column constrained differently in the $x_{2^{-}}$and x_{3}-directions at $x_{1}=L$.

Determine the maximum value for the length L of the column to guarantee that it will not fail by buckling.
The corresponding fourth-order ODE for the deflection $\bar{u}_{2}\left(x_{1}\right)$ is

$$
E I_{33} \bar{u}_{2}^{\prime \prime \prime \prime}\left(x_{1}\right)+P \bar{u}_{2}^{\prime \prime}\left(x_{1}\right)=p_{2}\left(x_{1}\right)=0
$$

For buckling in this direction, the boundary conditions are:

$$
\begin{aligned}
\bar{u}_{2}(0) & =0 \\
\bar{u}_{2}^{\prime}(0) & =0 \\
\bar{u}_{2}(L) & =0 \\
\bar{u}_{2}^{\prime}(L) & =0
\end{aligned}
$$

Now, apply these boundary conditions and determine the condition on the load P for which the beam can be in equilibrium in a deformed configuration, (i.e. we have a non-trivial solution $\left.\bar{u}_{2}\left(x_{1}\right) \neq 0\right)$. Also, let's define $k=\sqrt{\frac{P}{E I_{33}}}$.
For $\bar{u}_{2}\left(x_{1}=0\right)=0$:

$$
\begin{aligned}
\bar{u}_{2}\left(x_{1}=0\right) & =A \sin (0)+B \cos (0)+0+D \\
& =B+D=0
\end{aligned}
$$

For $\bar{u}_{2}^{\prime}\left(x_{1}=0\right)=0$:

$$
\begin{aligned}
\bar{u}_{2}^{\prime}\left(x_{1}=0\right) & =k A \cos (0)-k B \sin (0)+C \\
& =k A+C=0
\end{aligned}
$$

For $\bar{u}_{2}\left(x_{1}=L\right)=0$:

$$
\bar{u}_{2}^{\prime \prime \prime}\left(x_{1}=L\right)=A \cos (k L)+B \sin (k L)+C L+D=0
$$

For $\bar{u}_{2}^{\prime}\left(x_{1}=L\right)=0$:

$$
\begin{gathered}
\bar{u}_{2}^{\prime}\left(x_{1}=L\right)=k A \cos (k L)-k B \sin (k L)+C=0 \\
\left\{\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right\}=\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
k & 0 & 1 & 0 \\
\sin (k L) & \cos (k L) & L & 1 \\
k \cos (k L) & -k \sin (k L) & 1 & 0
\end{array}\right]\left\{\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right\}
\end{gathered}
$$

For a non-trivial solution (i.e. $\bar{u}_{2}\left(x_{1}\right) \neq 0$),

$$
\left\{\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right\} \neq\left\{\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right\}
$$

which requires the matrix to be singular, i.e. its determinant must vanish. Let's call this matrix \mathbf{H}.

$$
\operatorname{det}(\mathbf{H})=0=2 k-2 k \cos (k L)-k^{2} L \sin (k L)
$$

For the non-trivial case, we must look at the loading conditions that cause this determinant to be zero as is done in the course lecture slides. For the second case of buckling in the other plane, the proceedure is similar but there are different boundary conditions on the position $x_{1}=L$. In particular, in the x_{3} plane there is nothing touching the column at $x_{1}=L$ so there cannot be any moments or shear at the end.
As we have seen in the course the smallest buckling load is given by

$$
P_{c r}=\frac{4 \pi^{2} E I}{L^{2}}
$$

Here the inertia is with respect to the plane of buckling. Perform a similar analysis for the other plane, then compare the critical buckling loads with the analysis given here and with the conditions for failure due to yielding.

MIT OpenCourseWare
https://ocw.mit.edu/
16.001 Unified Engineering: Materials and Structures

Fall 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

