Department of Aeronautics & Astronautics, M.I.T. 16.001 - Materials & Structures

Quiz No. 4

Instructor: Raúl Radovitzky

Student's name:_____

Question	Points	Score
1	15	
2	15	
Total:	30	

Letter grade: _____

Question 1 [15 points]

It is shown in higher-level classes on elasticity theory that the stress field near a crack tip, as shown in Figure 1, subject to remote stresses is dominated by the following expressions for the stress components in cylindrical coordinates (r, θ) where r is the distance to the crack tip, θ is the angle sketched in the figure, and K is the so-called *stress intensity factor*, which is determined by the geometry of the domain and the remote loading conditions.

$$\sigma_{rr}(r,\theta) = \frac{K}{\sqrt{2\pi}} r^{-1/2} \left[\frac{5}{4} \cos\left(\frac{\theta}{2}\right) - \frac{1}{4} \cos\left(\frac{3\theta}{2}\right) \right] \tag{1}$$

$$\sigma_{\theta\theta}(r,\theta) = \frac{K}{\sqrt{2\pi}} r^{-1/2} \left[\frac{3}{4} \cos\left(\frac{\theta}{2}\right) + \frac{1}{4} \cos\left(\frac{3\theta}{2}\right) \right]$$
(2)

$$\sigma_{r\theta}(r,\theta) = \frac{K}{\sqrt{2\pi}} r^{-1/2} \left[\frac{1}{4} \sin\left(\frac{\theta}{2}\right) + \frac{1}{4} \sin\left(\frac{3\theta}{2}\right) \right]$$
(3)

Note that the given stress components are in the basis $\mathbf{e}_r, \mathbf{e}_{\theta}$, which changes at each point (r, θ) , and the functions are expressed in terms of cylindrical coordinates r, θ .

Figure 1:

1.1 (5 points) Use appropriate equations of stress equilibrium from the notes to show that this stress field is in equilibrium. Justify your choice of the specific version of the equilibrium equations.

-																
-																

1.2 (5 points) Among the peculiarities of this stress field, show that the principal directions of stress at any point in the domain are given by:

$$\tan(2\alpha_p) = \cot(\theta/2)$$

From this expression, use the trigonometric identity $\cot x = \tan (\pi/2 - x)$ to show that:

1.3 (5 points) Show that the state of stress along the line $\theta = 0$ is purely hydrostatic and the normal stress components on that line are $\sigma_{11} = \sigma_{22} = \frac{K}{\sqrt{2\pi r}}$

Question 2 [15 points]

(M.O. M11)

The state of strain at a point in an aluminum component of the fuselage of an airplane is measured with a delta strain gauge rosette (See Figure 2, where each gauge is a side of an equilateral triangle) of three strain gauges a, b, c. The strain gauges read $\epsilon_a = 15 \times 10^{-6}, \epsilon_b = 60 \times 10^{-6}, \epsilon_c = 80 \times 10^{-6}$.

Figure 2: Delta Rosette strain gauge

Determine:

2.1 (5 points) All the components of strain in cartesian axes $\mathbf{e}_1, \mathbf{e}_2$ respectively aligned with the horizontal and vertical direction. Clearly indicate the basis vectors and their angles with respect to the each other that you use in your calculations.

<u> </u>															 	

2.2 (5 points) The principal strains $\epsilon_{I,II}$, their directions $\alpha_{I,II}$

2.3 (5 points) The maximum shear strains γ^{max} and their directions α_s

_															
											_				
_									 						
_															

16.001 Unified Engineering: Materials and Structures Fall 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.