RC Circuit Equations II

For the circuit above with $R_2 = R_3 = R_4 = 1 \ \Omega$, $C_1 = C_5 = 1 \ F$, there is an exponential solution of the form

$$\underline{e}(t) = \underline{E}e^{st}$$

only if there is a non-trivial (i.e., nonzero) solution to the equations

$$\left[egin{array}{cccc} s+1 & -1 & 0 \ -1 & 3 & -1 \ 0 & -1 & s+1 \end{array}
ight] \left[egin{array}{cccc} E_1 \ E_2 \ E_3 \end{array}
ight] = \left[egin{array}{cccc} 0 \ 0 \ 0 \ 0 \end{array}
ight]$$

For what values of *s* are there nontrivial solutions?

RC Circuit Equations II Concept Test

For what values of *s* are there nontrivial solutions to the equations

$$\left[egin{array}{cccc} s+1 & -1 & 0 \ -1 & 3 & -1 \ 0 & -1 & s+1 \end{array}
ight] \left[egin{array}{cccc} E_1 \ E_2 \ E_3 \end{array}
ight] = \left[egin{array}{cccc} 0 \ 0 \ 0 \ 0 \end{array}
ight]$$

My confidence in my answer is:

- 1.0%
- 2. 20%
- 3. 40%
- 4. 60%
- 5.80%
- 6. 100%

RC Circuit Equations II Concept Test

There are nontrivial solutions to the equations

$$\left[egin{array}{cccc} s+1 & -1 & 0 \ -1 & 3 & -1 \ 0 & -1 & s+1 \end{array}
ight] \left[egin{array}{cccc} E_1 \ E_2 \ E_3 \end{array}
ight] = \left[egin{array}{cccc} 0 \ 0 \ 0 \ 0 \end{array}
ight]$$

for values *s* that satisfy the characteristic equation

$$\phi(s) = 3s^2 + 4s + 1 = (3s + 1)(s + 1) = 0$$

Therefore, the characteristic values are:

$$s_1 = -1 \sec^{-1}; \quad s_2 = -\frac{1}{3} \sec^{-1}$$

My answer was:

- 1. Completely correct
- 2. Almost correct
- 3. Incorrect
- 4. Incomplete, but correct as far as I got
- 5. I didn't know how to do this problem

RC Circuit Equations II Solution

Most students got this one completely correct or almost correct. Good.

Solving for Characteristic Vectors Concept Test

Find a solution to the equation

$$\left[egin{array}{cccc} 2/3 & -1 & 0 \ -1 & 3 & -1 \ 0 & -1 & 2/3 \end{array}
ight] \left[egin{array}{cccc} E_1 \ E_2 \ E_3 \end{array}
ight] = \left[egin{array}{cccc} 0 \ 0 \ 0 \ 0 \end{array}
ight]$$

My confidence in my answer is:

- 1.0%
- 2. 20%
- 3. 40%
- 4. 60%
- 5.80%
- 6. 100%

Solving for Characteristic Vectors Concept Test

A solution to the equation

$$\left[egin{array}{cccc} 2/3 & -1 & 0 \ -1 & 3 & -1 \ 0 & -1 & 2/3 \end{array}
ight] \left[egin{array}{cccc} E_1 \ E_2 \ E_3 \end{array}
ight] = \left[egin{array}{cccc} 0 \ 0 \ 0 \ 0 \end{array}
ight]$$

is

$$\left[egin{array}{c} E_1 \ E_2 \ E_3 \end{array}
ight] = \left[egin{array}{c} 1 \ 2/3 \ 1 \end{array}
ight]$$

My answer was:

- 1. Completely correct
- 2. Almost correct
- 3. Incorrect
- 4. Incomplete, but correct as far as I got
- 5. I didn't know how to do this problem

Solving for Characteristic Vectors Solution

Although many students were able to solve by inspection, the more reliable approach is to do row reduction. The original matrix is:

$$egin{bmatrix} 2/3 & -1 & 0 \ -1 & 3 & -1 \ 0 & -1 & 2/3 \end{bmatrix}$$

Normalize first row:

$$\left[egin{array}{cccc} 1 & -3/2 & 0 \ -1 & 3 & -1 \ 0 & -1 & 2/3 \end{array}
ight]$$

Eliminate -1 from first column in second row by subtracting -1 times the first row:

$$\left[egin{array}{cccc} 1 & -3/2 & 0 \ 0 & 3/2 & -1 \ 0 & -1 & 2/3 \end{array}
ight]$$

Normalize the second row:

$$\left[egin{array}{cccc} 1 & -3/2 & 0 \ 0 & 1 & -2/3 \ 0 & -1 & 2/3 \end{array}
ight]$$

Eliminate -1 from second column in third row by subtracting -1 times the second row:

$$\left[egin{array}{cccc} 1 & -3/2 & 0 \ 0 & 1 & -2/3 \ 0 & 0 & 0 \end{array}
ight]$$

Can then arbitrarily choose $E_3 = 1$. Then the second row means

 $E_2 - (2/3)E_3 = 0$

So $E_2 = 2/3$. Continuing the back substitution, $E_1 = 1$.