KEY CONCEPTS FOR MATERIALS AND STRUCTURES Handout for Spring Term Quizzes

Basic modeling process for 1-D structural members

- (1) Idealize/model make assumptions on geometry, load/stress and deformations
- (2) Apply governing equations (e.g. equations of elasticity)
- (3) Invoke known boundary conditions to derive constitutive relations for structure (load-deformation, load-internal stress etc.)

Analytical process for 1-D structural members

- (1) Idealize/model assumptions on geometry, load/stress and deformations
- (2) Draw free body diagram
- (3) Apply method of sections to obtain internal force/moment resultants
- (4) Apply structural constitutive relations to relate force/moment resultants to
 - a) internal stresses
 - b) deformations (usually requires integration invoking boundary conditions)

Elastic bending formulae

Based on convention for positive bending moments and shear forces:

for continuous loading, q,
$$q = \frac{dS}{dx}$$
, $S = \frac{dM}{dx}$

Bending of a symmetric cross section about its neutral axis (mid plane for a cross-section with two orthogonal axes of symmetry).

$$\sigma_{xx} = -\frac{Mz}{I}$$
 $M = EI \frac{d^2 w}{dx^2}$ $\sigma_{xz} = -\frac{SQ}{Ib}$

where σ_{xx} is the axial (bending) stress, M is the bending moment at a particular cross-section, I is the second moment of area about the neutral axis, z is the distance from the neutral axis, E is the Young's modulus of the material, w is the deflection, x is the axial coordinate along the beam, σ_{xz} is the shear stress at a distance z above the neutral axis, S is the shear force at a particular cross, section, Q is the first moment of area of the cross-section from z to the outer ligament, b is the width of the beam at a height b above the neutral axis.

Second moment of area $I = \int_{A} z^2 dA$

Standard solutions:

Rectangular area, breadth b, depth h: $I = \frac{bh^3}{12}$ Solid circular cross-section, radius R: $I = \frac{\pi R^4}{4}$

Isosceles Triangle, depth h, base b: $I = \frac{bh^3}{36}$

(note centroid is at h/3 above the base)

Parallel axis theorem:

Unified Engineering M&S Quiz Handout, 2004

If the second moment of area of a section, area A, about an axis is I then the second moment of area I' about a parallel axis, a perpendicular distance d away from the original axis is given by:

$$I' = I + Ad^2$$

First moment of area

The first moment of area of a section between a height z from the neutral plane and the top surface (outer ligament) of the section is given by:

$$Q = \int_{A,z}^{h/2} z dA$$

Standard solutions for deflections of beams under commonly encountered loading

Configuration	End slope End deflection, dw/dx (x=L) w(L)		Central deflection, w(L/2)
	$\frac{ML}{EI}$	$\frac{ML^2}{2EI}$	
	$\frac{PL^2}{2EI}$	$\frac{PL^3}{3EI}$	
	$\frac{q_0 L^3}{6EI}$	$\frac{q_0 L^4}{8EI}$	
	$\frac{PL^2}{16EI}$		$\frac{PL^3}{48EI}$
	$\frac{q_0 L^3}{24 EI}$		$\frac{5q_0L^4}{384EI}$

Integration of singularity functions: $\int_{-\infty}^{x} \langle x - a \rangle^{n} dx = \frac{\langle x - a \rangle^{n+1}}{n+1}, \quad n \ge 0$ $\int_{-\infty}^{x} \langle x - a \rangle_{-2} dx = \langle x - a \rangle_{-1} \qquad \qquad \int_{-\infty}^{x} \langle x - a \rangle_{-1} dx = \langle x - a \rangle^{0}$

Torsion of round shafts

An internal torque resultant, T generates a circumferential shear stress, τ , at a radius r, and twist per unit length, $\frac{d\phi}{dx}$, where:

$$\tau = \frac{Tr}{J} \qquad \qquad T = GJ \frac{d\phi}{dx}$$

G is the shear modulus of the material and J is the second polar moment of area given by:

$$J = \int_{A} r^2 dA$$

 $J = \frac{\pi R^4}{2}$

For a solid circular cross section, radius R:

For a thin walled circular tube, radius R, thickness t: $J = 2\pi R^3 t$

Elastic buckling of columns

The general governing equation for the transverse (buckling), w, of a uniform column of bending stiffness EI, under an axial load P is: $\frac{d^2w}{dx^2} + \frac{P}{EI}x = M_0$. Where M_0 is a constant. General solutions are of the form:

$$w = A\sin\left(\sqrt{\frac{P}{EI}}x\right) + B\cos\left(\sqrt{\frac{P}{EI}}x\right) + Cx + D.$$

In general the elastic critical load, $P_{cr} = cP_{E'}$ where the factor c depends on the boundary conditions and the order of the buckling mode, and P_E is the Euler Load for a perfect, pin ended column of length, L buckling into a half sine wave given by:

$$P_E = \frac{\pi^2 EI}{L^2}$$

Yield and Plasticity of Metals

Uniaxial loading of a bar, initial length ℓ_0 , cross-sectional area A_0 past yield point: Define nominal, true stress and nominal and true strain:

$$\sigma_n = \frac{P}{A_0}, \qquad \sigma_t = \frac{P}{A}, \qquad \varepsilon_n = \frac{\Delta \ell}{\ell_0} = \frac{\ell - \ell_0}{\ell_0}, \qquad \varepsilon_t = \int_{\ell_0}^{\ell} \frac{d\ell}{\ell} = \ln\left(\frac{\ell}{\ell_0}\right)$$

Since volume is conserved: $A_0\ell_0 = A\ell$ obtain: $\sigma_t = \sigma_n(1 + \varepsilon_n)$ and $\varepsilon_t = \ln(1 + \varepsilon_n)$

Work of deformation per unit volume: $U = \int_{\varepsilon_{n1}}^{\varepsilon_{n2}} \sigma_n d\varepsilon_n = \int_{\varepsilon_{t1}}^{\varepsilon_{t2}} \sigma_t d\varepsilon_t$ Elastic Strain Energy (for linear elastic deformation): $U = \frac{\sigma_n^2}{2F}$

For multiaxial stress states models for yield:

Tresca:

$$\max\left\{ \left| \sigma_{I} - \sigma_{II} \right|, \left| \sigma_{II} - \sigma_{III} \right|, \left| \sigma_{III} - \sigma_{I} \right| \right\} \ge \sigma_{y}$$

Von Mises: $(\sigma_I - \sigma_I)$

$$(\sigma_{II})^{2} + (\sigma_{II} - \sigma_{III})^{2} + (\sigma_{III} - \sigma_{I})^{2} \ge 2\sigma_{y}^{2}$$

Where σ_{I} etc are the principal stresses and σ_{v} is the uniaxial yield strength

Hardness $H = \frac{F_{indentation}}{A_{indentation}} \approx 3\sigma_y$ In a uniaxial tension test, necking occurs when: $\frac{d\sigma_t}{d\varepsilon_t} = \sigma_t$

Transformation of Stress and Strain via Mohr's Circle:

Mohr's circle is a geometric representation of the 2-D transformation of stresses.

<u>Construction</u>: Given the state of stress shown below for an infinitessimal element, with the following definition (by Mohr) of positive and negative shear:

"Positive shear would cause a clockwise rotation of the element about the element center."

Thus: σ_{21} (*below*) is plotted positive σ_{12} (*below*) is plotted negative:

Principal stresses correspond to points G, F. Max shear at H, H'.

Note that angles are doubled on the Mohr's circle relative to the physical problem. Note that a Mohr's circle can only be drawn stresses in a plane perpendicular to a principal direction.

Strengthening Mechanisms

Precipitate Strengthening: $\Delta \tau_y \approx$	$\frac{Gb}{L}$ where	G= shear modulus, b=Burgers vector, L = particle
spacing Solid Solution strengthening:	$\Delta \tau_y \propto \sqrt{c}$ wh	here $c = concentration of alloying elements$
Work Hardening:	$\Delta \tau_y \propto \gamma^m$	where γ = shear strain, m = exponent (0.01-0.5)
Grain Boundary Effect:	$\Delta \tau_y \propto 1/\sqrt{d}$	where d = grain size

Fracture and Fatigue

Fast fracture occurs when: $dW \ge dU^{el} + G_c dA$ where W = external work, U_{el} = elastic strain energy, G_c is the material's toughness and A is the area of crack surface.

Can also be written: $K \ge K_c$ Where K_c is the fracture toughness and K is the stress intensity factor given by:

$$K = Y \sigma \sqrt{\pi a}$$

where Y is a factor which depends on the crack and component shape (\approx 1), a is the crack length and σ the applied stress

For many metals fatigue crack growth is of the form:

$$\frac{da}{dN} = A\Delta K^n$$

where A and n are empirically determined constants.