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PRS 1 -- Scope 

1. Nothing is displayed on the screen 
2. 0 (zero) is displayed on the screen 
3. 7 is displayed on the screen 
4. Don’t know 



Recursion 

call themselves 

base 
case) is reached that can be solved 
immediately 

General algorithm 
• if stopping condition then 

solve simple problem
else 

use recursion to solve smaller problem(s)
combine solutions from smaller problem(s) 

• Writing procedures and functions which 

• Involves  
– Solving large problems 
– By breaking them into smaller problems 
– Of identical form  

• Eventually, a “trivial” problem (the 

• Iteration  
– Cognitive simple  

• Recursion  
– Is not as intuitive 
– Demanding on machine time and memory 
– Sometimes simpler than iteration 



Guess a number 
• Problem: think of a number in the range 

1 to N 

• Reworded: 
– 
– 

guess again 
– 

• Recursion comes into the “guess again” 
stage 
– 
– 

Factorial 

n, 
computes n! 

n! = 1 ∗ 2 ∗ ... ∗ (n-1) ∗ n 

5! = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 = 120 

Receive: n, an integer 
Precondition: n >= 0 (0! = 1 and 1! = 1) 
Return: n! 

Given a set of N possible numbers to choose from 
Guess a number from the set 

– If wrong,  
Continue until the number is guessed successfully 

A set of N-1 numbers remains from which to guess 
This is a smaller version of the same problem 

• Write a function that, given 

• Example:  

• Specification: 



Preliminary Analysis 

function 
return Positive is 

Result : Positive; 

begin
Result := 1;
for Count in 2 .. N loop

Result := Result * Count;
end loop; 

return Result; 

end Factorial_Iterative; 

Analysis 

n! = 1 ∗ 2 ∗ ... ∗ (n-1) ∗ n 

so: (n-1)! = 1 ∗ 2 ∗ ... ∗ (n-1) Î 

n! = (n-1)! ∗ n 

We have defined the ! function 
in terms of itself 

Factorial_Iterative (N : Natural) 

• Consider: 



Recursion 

• 
called self-referential, or recursive. 

• 
process: 

base case
problem whose solution is trivial 

Example: The factorial function has two base 
cases: 
if n = 0 : n! = 1 
if n = 1 : n! = 1 

Induction Step 

induction step: a means of solving the 
one or 

Example: In the factorial problem, we solve the 

problem: 
n! = (n-1)! ∗ n 

induction step. 

A function that is defined in terms of itself is 

Recursive functions are designed in a 3-step 

1. Identify a : an instance of the 

2. Identify an 
non-trivial instances of the problem using  
more “smaller” instances of the problem. 

“big” problem using a “smaller” version of the 

3. Form an algorithm from the base case and 



Algorithm 

0. Receive N 

1. if N > 1 
return Factorial(N-1) * N 

else 
return 1 

Ada Code 

function return 
Positive is 

begin 

if N > 1 then 
return N * Factorial(N-1);

else 
return 1;

end if; 

end Factorial; 

-- Factorial(N) 

Factorial (N : Natural) 

-- factorial 



Behavior 

The function starts executing, with N = 4. 

N 4 

return ? 

Factorial(4) 

function Factorial (N : Natural)
return Positive is 

begin – factorial 

if N > 1 then 
return N * Factorial(N-1);

else 
return 1;

end if; 

end Factorial; 

Behavior 

N 4 

return ? 

Factorial(4) 

N 3 

return ? 

Factorial(3) 

N 2 

return ? 

Factorial(2) 

N 1 

return 1 

= 2 * 1 

function Factorial (N : Natural)
return Positive is 

begin – factorial 

if N > 1 then 
return N * Factorial(N-1);

else 
return 1;

end if; 

end Factorial; 

Factorial(1) terminates, returning 1 to Factorial(2). 



Behavior 

N 4 

return ? 

Factorial(4) 

N 3 

return 6 

= 4 * 6 

function Factorial (N : Natural)
return Positive is 

begin – factorial 

if N > 1 then 
return N * Factorial(N-1);

else 
return 1;

end if; 

end Factorial; 

Behavior 

Factorial(4) terminates, returning 24 to its caller. 

N 4 

return 24 

Factorial(4) 

function Factorial (N : Natural)
return Positive is 

begin – factorial 

if N > 1 then 
return N * Factorial(N-1);

else 
return 1;

end if; 

end Factorial; 

Factorial(3) terminates, returning 6 to Factorial(4): 



For example the exponentiation problem:

Given two values x and n, compute xn.

Example: 33 = 27

• 

usually win, because the overhead of a 
function call is far more time-consuming than 
the time to execute a loop. 

• 
recursive solution is more efficient than a 
corresponding loop-based solution. 

For example the exponentiation problem: 

Given two values x and n, compute xn. 

Example: 33 = 27 

A Legend 

Legend has it that there were three diamond needles 

Stacked upon the leftmost needle were 64 golden 
disks, each a different size, stacked in concentric 
order: 

If we time the for-loop version and the 
recursive version, the for-loop version will 

However, there are problems where the 

set into the floor of the temple of Brahma in Hanoi. 



A Legend (Ct’d) 

The priests were to transfer the disks from the first 
needle to the second needle, using the third as 
necessary. 

But they could , and 
could never put a larger disk on top of a smaller 
one. 

When they completed this task, the world would 
end! 

Our Problem 

generates the instructions for the priests to follow in 
moving the disks. 

has a simple and elegant recursive solution. 

only move one disk at a time

Today’s problem is to study/write a program that 

While quite difficult to solve iteratively, this problem 



Example 

stack of six disks from needle 1 to 
needle 2. 

single move. 

the five disks on top of it out of the way. 

then need to move the five disks back on 
top of it to complete the solution. 

Example 

problem, is to solve the five disk 
problem (with a different destination 
needle). Here is where recursion comes 
in. 

• Consider six disks instead of 64 
• Suppose the problem is to move the 

– Part of the solution will be to move the 
bottom disk from needle 1 to needle 2, as a 

– Before we can do that, we need to move 

– After we have moved the large disk, we 

• We have the following process: 
– Move the top five disks to needle 3 
– Move the disk on needle 1 to needle 2 
– Move the disks on needle 3 to needle 2 

• Notice that part of solving the six disk 



Algorithm 

• hanoi(from,to,other,number)
number disks 

from to needle to 
if number=1 then 

move the top disk from needle from to needle to 
else 

hanoi(from,other,to, number-1)
hanoi(from,to,other, 1)
hanoi(other,to, from, number-1)

end 

Analysis 

problem, as a function of n
be moved. 
n 
1 1 
2 3 
3 7 
4 
5 
... 
i 2i-1 
64 264-1 (a big number) 

-- move the top 
-- from needle 

Let’s see how many moves it takes to solve this 
, the number of disks to 

Number of disk-moves required 

15  
31  



Assume that the user enters: 

Hi!(end of line) 

PRS2 -- Recursion 

1. Displays Hi! on the same line 

2. Displays Hi! on the next line 

3. Displays !iH on the same line 

4. Displays !iH on the next line 


