
Introduction to Computers and
Programming

Lecture 12

Prof. I. K. Lundqvist

Reading: B pp. 181-189, FK pp. 591-621, handout Oct 1 2003

PRS 1 -- Scope

1. Nothing is displayed on the screen
2. 0 (zero) is displayed on the screen
3. 7 is displayed on the screen
4. Don’t know

Recursion

call themselves

base
case) is reached that can be solved
immediately

General algorithm
• if stopping condition then

solve simple problem
else

use recursion to solve smaller problem(s)
combine solutions from smaller problem(s)

• Writing procedures and functions which

• Involves
– Solving large problems
– By breaking them into smaller problems
– Of identical form

• Eventually, a “trivial” problem (the

• Iteration
– Cognitive simple

• Recursion
– Is not as intuitive
– Demanding on machine time and memory
– Sometimes simpler than iteration

Guess a number
• Problem: think of a number in the range

1 to N

• Reworded:
–
–

guess again
–

• Recursion comes into the “guess again”
stage
–
–

Factorial

n,
computes n!

n! = 1 ∗ 2 ∗ ... ∗ (n-1) ∗ n

5! = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 = 120

Receive: n, an integer
Precondition: n >= 0 (0! = 1 and 1! = 1)
Return: n!

Given a set of N possible numbers to choose from
Guess a number from the set

– If wrong,
Continue until the number is guessed successfully

A set of N-1 numbers remains from which to guess
This is a smaller version of the same problem

• Write a function that, given

• Example:

• Specification:

Preliminary Analysis

function
return Positive is

Result : Positive;

begin
Result := 1;
for Count in 2 .. N loop

Result := Result * Count;
end loop;

return Result;

end Factorial_Iterative;

Analysis

n! = 1 ∗ 2 ∗ ... ∗ (n-1) ∗ n

so: (n-1)! = 1 ∗ 2 ∗ ... ∗ (n-1) Î

n! = (n-1)! ∗ n

We have defined the ! function
in terms of itself

Factorial_Iterative (N : Natural)

• Consider:

Recursion

•
called self-referential, or recursive.

•
process:

base case
problem whose solution is trivial

Example: The factorial function has two base
cases:
if n = 0 : n! = 1
if n = 1 : n! = 1

Induction Step

induction step: a means of solving the
one or

Example: In the factorial problem, we solve the

problem:
n! = (n-1)! ∗ n

induction step.

A function that is defined in terms of itself is

Recursive functions are designed in a 3-step

1. Identify a : an instance of the

2. Identify an
non-trivial instances of the problem using
more “smaller” instances of the problem.

“big” problem using a “smaller” version of the

3. Form an algorithm from the base case and

Algorithm

0. Receive N

1. if N > 1
return Factorial(N-1) * N

else
return 1

Ada Code

function return
Positive is

begin

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

-- Factorial(N)

Factorial (N : Natural)

-- factorial

Behavior

The function starts executing, with N = 4.

N 4

return ?

Factorial(4)

function Factorial (N : Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

Behavior

N 4

return ?

Factorial(4)

N 3

return ?

Factorial(3)

N 2

return ?

Factorial(2)

N 1

return 1

= 2 * 1

function Factorial (N : Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

Factorial(1) terminates, returning 1 to Factorial(2).

Behavior

N 4

return ?

Factorial(4)

N 3

return 6

= 4 * 6

function Factorial (N : Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

Behavior

Factorial(4) terminates, returning 24 to its caller.

N 4

return 24

Factorial(4)

function Factorial (N : Natural)
return Positive is

begin – factorial

if N > 1 then
return N * Factorial(N-1);

else
return 1;

end if;

end Factorial;

Factorial(3) terminates, returning 6 to Factorial(4):

For example the exponentiation problem:

Given two values x and n, compute xn.

Example: 33 = 27

•

usually win, because the overhead of a
function call is far more time-consuming than
the time to execute a loop.

•
recursive solution is more efficient than a
corresponding loop-based solution.

For example the exponentiation problem:

Given two values x and n, compute xn.

Example: 33 = 27

A Legend

Legend has it that there were three diamond needles

Stacked upon the leftmost needle were 64 golden
disks, each a different size, stacked in concentric
order:

If we time the for-loop version and the
recursive version, the for-loop version will

However, there are problems where the

set into the floor of the temple of Brahma in Hanoi.

A Legend (Ct’d)

The priests were to transfer the disks from the first
needle to the second needle, using the third as
necessary.

But they could , and
could never put a larger disk on top of a smaller
one.

When they completed this task, the world would
end!

Our Problem

generates the instructions for the priests to follow in
moving the disks.

has a simple and elegant recursive solution.

only move one disk at a time

Today’s problem is to study/write a program that

While quite difficult to solve iteratively, this problem

Example

stack of six disks from needle 1 to
needle 2.

single move.

the five disks on top of it out of the way.

then need to move the five disks back on
top of it to complete the solution.

Example

problem, is to solve the five disk
problem (with a different destination
needle). Here is where recursion comes
in.

• Consider six disks instead of 64
• Suppose the problem is to move the

– Part of the solution will be to move the
bottom disk from needle 1 to needle 2, as a

– Before we can do that, we need to move

– After we have moved the large disk, we

• We have the following process:
– Move the top five disks to needle 3
– Move the disk on needle 1 to needle 2
– Move the disks on needle 3 to needle 2

• Notice that part of solving the six disk

Algorithm

• hanoi(from,to,other,number)
number disks

from to needle to
if number=1 then

move the top disk from needle from to needle to
else

hanoi(from,other,to, number-1)
hanoi(from,to,other, 1)
hanoi(other,to, from, number-1)

end

Analysis

problem, as a function of n
be moved.
n
1 1
2 3
3 7
4
5
...
i 2i-1
64 264-1 (a big number)

-- move the top
-- from needle

Let’s see how many moves it takes to solve this
, the number of disks to

Number of disk-moves required

15
31

Assume that the user enters:

Hi!(end of line)

PRS2 -- Recursion

1. Displays Hi! on the same line

2. Displays Hi! on the next line

3. Displays !iH on the same line

4. Displays !iH on the next line

