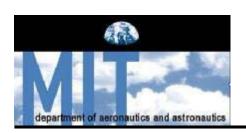


SP4: Engineering Education and Baseline Assessment

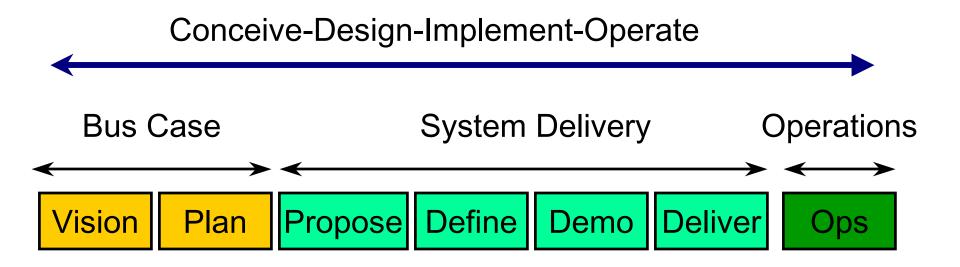
Unified Engineering Spring 2004
Thu 3-Mar-04
Charles P Coleman, MIT

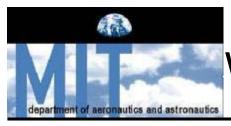


Outline


Outline

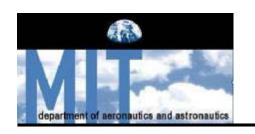
- Reflections on Seering 2003
- SP4





Seering 2003: Same story!

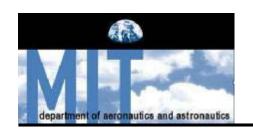
Life Cycle: CDIO in Industry



Why is Reform/Redefinition Needed?

- Emphasis on teaching of engineering science.
- De-emphasis on teaching engineering practice.
- Students lacking abilities required in real world engineering situations.

Widening Gap between engineering education and engineering practice.


Attributes: Desired Outcomes

Boeing

- Good understanding of engineering science
- Good understanding of design and manufacturing
- Multi-disciplinary, systems perspective
- Understanding of the context in which engineering is practiced.
 - Economics
 - History
 - The environment
 - Customer and societal needs
- Good communication skills
- Profound understanding of the importance of teamwork

ABET

- Ability to apply knowledge
- Ability to design and conduct experiments
- Ability to design system, component, or process
- Ability to function on multidisciplinary teams
- Understanding of ethical responsibility
- Understand impact of engineering in global and societal context
- Ability to use techniques, skills and tools necessary for engineering practice

Teaching the Engineering Method?

Essential Functions of an Engineer:

Graduation engineers should be able to:

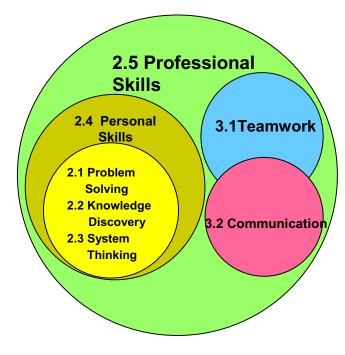
Conceive-design-implement-operate (CDIO)

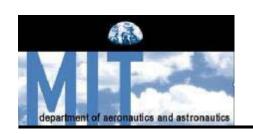
Complex value-added engineering systems (Technical)

In a modern team-based environment (Interpersonal)

And are mature and thoughtful individuals (Personal)

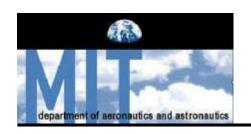
Map of the new CDIO syllabus


Educate students who: Process Understand how to conceivedesign-implement-operate **Product** Complex value-added 4. CDIO engineering systems 3. Inter-1. Technical 2. Personal In a modern team-based personal engineering environment And are mature and thoughtful Team individuals Self



CDIO Syllabus covered by System **Problems**

Fall	Spring
Weekly individual assignments	Semester long team assignment
Self-contained assignments	Interdependent assignments
Progressively more complex assignments	Progressively more complex assignments
Integration of 1-2 disciplines	Integration of 2-3+ disciplines



Map of the new CDIO syllabus

Educate students who: Process Understand how to conceivedesign-implement-operate **Product** Complex value-added 4. CDIO engineering systems 3. Inter-1. Technical 2. Personal In a modern team-based personal engineering environment And are mature and thoughtful Team individuals Self

Engineering Method Tools

Design

- Process
- Analysis

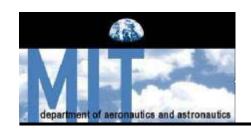
Tools:

- FRDIARRC
- Design Selection Matrix

Project Mgmt

- Time
- Resources
- Risk

Tools:


- WBS
- Gantt Chart

Teamwork

- Communication
- Coordination
- Roles & Responsibilities
- Motivation!

Tools:

- Comm Plan
- Roles & Resp
- Ground Rules
- Effective Mtgs

McDonald's Functional Requirements Design Ideas

Functional Requirements	Design Idea	Analysis
Take orders	Internet At counter terminal	Cost, Time Efficiency, Course 6
Cook burgers	Flame broil Nuke Fry	Patent infringement? Course 22 Thermo, Course 2
Deliver burgers	Delivery At the counter Dispensing machine	Cost,Time, Cust Sat Efficiency, packaging Robotics, Course 2