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F9 – Lecture Notes 
1. General Wings 

Reading: Anderson 5.3.2, 5.3.3 

General Wings 
General circulation distribution and downwash 
The assumption of elliptic loading is too restrictive for the design of practical wings. A more 
general circulation distribution can be conveniently described by a Fourier sine series, in 
terms of the angle coordinate α defined earlier. 

N 

�(α) = 2bV An sin nα 
n=1 

This is a superposition of individual weighted component shapes sin nα, shown in the fig
ure plotted versus the physical coordinate y. The induced angle for this � distribution is 

sin � A2 
sin 2� A3 

sin 3�A12bV 

y y y ...y 

evaluated by first noting that 

Nd� d� � 
dy = dα = 2bV nAn cos nα dα 

dy dα � 

n=1 

which is then substituted into the induced angle integral. 

N1 
 b/2 d� dy 1 � 
 � cos nα 
�i = = nAn dα 

4�V −b/2 dy yo − y � 0 cos α − cos αo� n=1 

This integral was evaluated earlier, which gives the final result. 

N 
� sin nαo

�i(αo) = nAn 
sin αon=1 

Each component of �(α) has a corresponding component of �i(α). The leading n = 1 term 

1 
sin 2� A2 

sin 3��i A 1 A sin � 3 sin � 

...y y y y 

is the same as the elliptic loading case, with the expected uniform induced angle. The 
remaining terms deviate the loading away from the elliptic distribution, and deviate the 
downwash away from the uniform distribution. 
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Lift 
We can now compute the lift for the general circulation distribution by integrating it across 
the span. 


 b/2 
L = π V

�
�(y) dy 

−b/2 

The integral is most easily evaluated using the α coordinate. With the substitutions 

b 
y = cos α 

2 
b 

dy = − sin α dα 
2 

we then have 
N 
 � 

� 
� b 

L = = π V 2bV An sin nα sin α dα 
2 0 n=1 

All the integrals inside the summation are readily evaluated using the orthogonality property 
of the sine functions. 

�/2 (if n = m)
sin nα sin mα dα = 

0 0 (if n �= m) 

For our case we have m = 1, and then consider n = 1, 2, 3 . . . for each term. Clearly, the 
n = 1 integral evaluates to �/2, and the rest evaluate to zero. Therefore, 

L = π V 2 b2 A1
2 

C
b2 

L = 
1 = �A1 = A1 �AR 

L 
π V 2 S S 

2 � 

Only the leading n = 1 component of the circulation contributes to the lift. This is expected 
after examination of the component shapes for �(y), which shows that only the n = 1 shape 
has a nonzero area under it. 

Induced drag and span efficiency 
The induced drag is also evaluated by spanwise integration. 

D

 b/2 

i = π V
�

�(y) �i(y) dy 
−b/2 

After switching from y to α, and substituting for �(α) and �i(α), this evaluates to 

1 N �

� 

D
� � 1 � An 

�2 

i = �b2 π V 2 A2 + 2A2 + 3A2 + . . . NA2 = �b2 π V 2 A2 

2 � 1 2 3 N 2 � 1 1 + n 
A1n=2 

Although only the A1 part of the circulation contributes to lift, all the An parts contribute 
towards increasing the induced drag. We therefore conclude that the elliptic load distribution 
gives the smallest induced drag for a given lift and span. 

A more convenient equation for the induced drag can be obtained by replacing A1 in terms 
of the lift. This gives 

(L/b)2 

Di = 
1 [1 + �]
π V 2 � 

2 � 
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where 
N � 

� An 
�2 

A
� � n 

1n=2 

can be thought of as a fractional induced drag penalty due to the presence of the higher 
n = 2, 3 . . . “non-elliptic” loading terms. It is traditional to define a span efficiency 

1 
e � 

1 + � 

so that the induced drag is finally given as 

(L/b)2 

Di = 
1 π V 2 � e 
2 � 

The corresponding induced drag coefficient is then easily obtained. 

C
C2 

Di = L 

� e AR 

Because � is the sum of squares and hence non-negative, the span efficiency must be e � 1, 
and the actual induced drag is never less than the minimum drag corresponding to elliptic 
loading, for which � = 0 and e = 1. 

Load distributions on typical planforms 
The figure shows three wing planforms with no twist (constant �geom), along with their 
computed circulation distributions at some nonzero lift. Also shown is the elliptic component 
of the circulation 2bV A1 sin α as a dotted line. The difference between the two curves is the 
remaining n = 2, 3 . . . terms, which also result in a nonzero �, and e < 1. Even the relatively 
crude constant-chord wing has an acceptable span efficiency, with only a 4% induced drag 
“penalty”. The loading on the double-taper wing is very nearly elliptic, and hence e ≡ 1 for 
this case. Clearly, the complexity of a curved elliptic planform is hardly warranted. 

e = 0.960 e = 0.989 e = 0.997 

constant chord double taper 

� � � 

simple taper, r=0.6 

�1 sin 

� 

2bV A 

Effects of trailing edge flaps 
Deflection of a part-span trailing edge flap will usually cause a significant distortion in 
the load distribution, producing a significant increase in induced drag. The figure shows 
the constant-chord wing case, with a central flap deflected downward 15� . The loading is 
strongly non-elliptic, and the span efficiency has decreased to 0.840. Note also the strongly 
non-uniform downwash distribution resulting from this distorted loading. 
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e = 0.840 

w 

deflected flap 

Lift slope reduction 
The downwash behind any finite wing modifies the wing’s lift slope. Consider the c�-angle 
relation at a typical spanwise location. 

c� = a0 (� + �aero − �i) 

For a nearly-elliptic loading, we have c� ≡ CL and �i ≡ CL/�eAR 

CL
giving CL = a0 � + �aero − 

a
�eAR 

0 
or CL = a0 

(� + �aero)
1 + 

�eAR 

The lift slope is now 
dCL a0 

= � a a0d� 1 + 
�eAR 

A common approximation is to assume that a0 = 2� and e ≡ 1, in which case 

2� 
a ≡ 

1 + 2/AR 

This slope a clearly decreases as AR is reduced. Low aspect ratio wings must therefore 
operate at higher angles of attack than high aspect ratio wings to reach the same CL. 

� 

CL 

a 

AR = 

AR = 5a0 

−�aero
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