Lab 3 - DC Motor / Propeller Characterization Unified Engineering
 27 Feb 06

Learning Objectives

- Measure thrust, torque, electrical power with prop test rig and wind tunnel
- Create motor/prop performance curves

Secondary Objectives, for Flight Competition Project

- Get familiar with propulsion terminology and propeller performance parameters

Experimental Rig

- Test Article: Propeller/motor unit in $1^{\prime} \times 1^{\prime}$ tunnel in Bldg 33 hangar
- Instrumentation:
- Tunnel's pitot-static probe for airspeed measurement
- Prop test rig with thrust and torque gauges
- Power supply with voltage and current meters
- Strobe for measuring RPM

Test Conditions

- Fixed motor terminal voltages: $v=3$ Volts, 6 Volts
- Nominal wind tunnel speeds: $V=0 \ldots V_{o}$ (static to zero-load condition)

Suggested tunnel speed increments: $\Delta V \simeq 1 \mathrm{~m} / \mathrm{s}$ for $v=3$ Volts , $2 \mathrm{~m} / \mathrm{s}$ for $v=6$ Volts

Wind-off Sensor Tare data, prop mounted, wind off.

- $T_{\text {tare }}, Q_{\text {tare }}$ from load sensor. Enter these in $T_{\text {read }}, Q_{\text {read }}$ columns for convenience.

Take tares before and after each tunnel-speed sweep to check for drift. Use average values. Note: Do not bump the rig during a run. This is likely to disturb the tare values.

Motor-mount Aero Tare data.

The motor mount has a small negative thrust (i.e. drag) T_{0}, and a very small aerodynamic torque Q_{0}, both of which must be corrected for. To reduce your test time, we provide this aero tare data in the form of aero-tare thrust area and torque volume:

$$
\begin{aligned}
& C T A_{0} \equiv \frac{T_{0}}{q_{\infty}}=-1.6 \times 10^{-3} \mathrm{~m}^{2} \\
& C Q A_{0} \equiv \frac{Q_{0}}{q_{\infty}}=+1.1 \times 10^{-6} \mathrm{~m}^{3}
\end{aligned}
$$

Raw Prop Data Acquired for each each tunnel speed sweep

- Wind-off tares $T_{\text {tare }}, Q_{\text {tare }}$ from load cells, at beginning and end of tunnel-speed sweep.
- v from voltmeter (in Volts). Adjust power supply to hold v fixed for all tunnel speeds.
- q_{∞} from tunnel's pitot-static probe in Torr. Convert to Pascals.
- $T_{\text {read }}, Q_{\text {read }}$ from load cells.
- i from ammeter (in Amps).
- RPM using strobe. Convert to $\Omega(\mathrm{in} \mathrm{rad} / \mathrm{s})$. To avoid aliasing, start with strobe in a too-high setting, say 15000 RPM, and then reduce setting until you see the prop stop.

Data processing

- The data recording sheet can be used for hand data reduction, but a spreadsheet will be much faster and less error-prone.
- Load cell tare correction, calibration conversions, and aero-tare correction.

$$
\begin{aligned}
T[\mathrm{~N}] & =5.00 \times 10^{-3} \times\left(T_{\text {read }}-T_{\text {tare }}\right)-q_{\infty} C T A_{0} \\
Q[\mathrm{Nm}] & =1.47 \times 10^{-4} \times\left(Q_{\text {read }}-Q_{\text {tare }}\right)-q_{\infty} C Q A_{0}
\end{aligned}
$$

- Thrust and power coefficient calculations. These are analogous to C_{L} and C_{D} for a wing. (note extra R factor in C_{P} denominator!).

$$
C_{T}=\frac{T}{\frac{1}{2} \rho(\Omega R)^{2} \pi R^{2}} \quad, \quad C_{P}=\frac{Q}{\frac{1}{2} \rho(\Omega R)^{2} \pi R^{3}}
$$

- Advance ratio λ (analogous to α for a wing), efficiency calculations.

$$
\lambda=\frac{V}{\Omega R} \quad, \quad \eta_{p}=\frac{T V}{Q \Omega}=\lambda \frac{C_{T}}{C_{P}} \quad, \quad \eta_{m}=\frac{Q \Omega}{i v} \quad, \quad \eta=\frac{T V}{i v}=\eta_{p} \eta_{m}
$$

Lab Report Contents

- Name of author, and members of the lab group
- Abstract
- Sketch of experimental setup
- State the propeller being tested: APC7x4. Motor: Speed-400-7V.
- One plot of dimensional $T(V)$, two curves, one for each voltage (see Fig 2 in Lab notes).
- One plot of rotation rate $\Omega(V)$, two curves, one for each voltage (see Fig 2 in Lab notes)
- One plot of efficiency $\eta(V)$, two curves, one for each voltage (see Fig 2 in Lab notes)

Comment on how the best-efficiency speed V appears to vary with voltage.

- One plot of motor current $i(V)$, two curves, one for each voltage (see Fig 2 in Lab notes)
- Two plots of component and total efficiency $\eta_{p}(V), \eta_{m}(V), \eta(V)$ curves, one plot for each voltage (see Fig 7 in Lab notes). Comment on whether this prop and motor are well matched.
- Determine V_{o} and aerodynamic pitch $\mathrm{P}_{\text {aero }}$ for each voltage. Compare your $\mathrm{P}_{\text {aero }}$ values with manufacturer's stated pitch P
- Three dimensionless coefficient plots. Two curves on each plot, one for each voltage:
- $C_{T}(\lambda)$
- $C_{P}(\lambda)$
$-\eta_{p}(\lambda)$
Comment on the usefulness of these curves for determining the propeller's dimensional thrust and torque for any V, Ω combination.
- Estimates of uncertainty and errors in results.
\qquad Pitch: \qquad $R=\mathrm{D} / 2=$ [m]

Motor: \qquad
$v_{1}=3 \mathrm{~V}$

q_{∞}	$T_{\text {read }}$	$Q_{\text {read }}$	i	$R P M$	$q_{\infty}[\mathrm{Pa}]$	$T[\mathrm{~N}]$	$Q[\mathrm{Nm}]$	$V[\mathrm{~m} / \mathrm{s}]$	$\Omega[\mathrm{rad} / \mathrm{s}]$	λ	C_{T}	C_{P}	η_{p}
Tares:													
Tares:													

$v_{2}=6 \mathrm{~V}$

q_{∞}	$T_{\text {read }}$	$Q_{\text {read }}$	i	$R P M$	$q_{\infty}[\mathrm{Pa}]$	T	$[\mathrm{~N}]$	$Q[\mathrm{Nm}]$	$V[\mathrm{~m} / \mathrm{s}]$	$\Omega[\mathrm{rad} / \mathrm{s}]$	λ	C_{T}	C_{P}	η_{p}
Tares:					-	-	-	-	-	-	-	-	-	
Tares:														

