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F15 – Lecture Notes 
1. Mach Number Relations 

2. Normal-Shock Properties 
Reading: Anderson 8.4, 8.6 

Mach Number Relations 
Local Mach number 

For a perfect gas, the speed of sound can be given in a number of ways. 

� �p 
a = �RT = = (�−1) h (1) 

The dimensionless local Mach number can then be defined. 

2V �(u2 + v2 + w2) � u2 + v2 + w
M � = = 

a �p (�−1) h 

It’s important to note that this is a field variable M(x, y, z), and is distinct from the 
freestream Mach number M . Likewise for V and a. 

V 
a 
M 

V(x,y,z) 
a(x,y,z) 
M(x,y,z) 

The local stagnation enthalpy can be given in terms of the static enthalpy and the Mach 
number, or in terms of the speed of sound and the Mach number. 

1 1 V 2 �−1 
ho = h + V 2 = h 1 + = h 1 + 

�−1 
M2 = 

a2 � 

1 + M2 (2)
2 2 h 2 �−1 2 

This now allows the isentropic relations 

po 

� 
�o 

�� � 
ho 

��/(�−1) 

= = 
p � h 

to be put in terms of the Mach number rather than the speed as before. 

�o 
� 

�−1 
1/(�−1) 

= 1 + M2 
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�/(�−1) 

= 1 + M2 
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The following relation is also sometimes useful. 

V 2 �−1 


−1 

1 − = 1 + M2 

2ho 2 
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Normal-Shock Properties 
Mach jump relations 
We now seek to determine the properties �2, u2, p2, h2 downstream of the shock, as functions 
of the known upstream properties �1, u1, p1, h1. In practice, it is sufficient and much more 
convenient to merely determine the downstream Mach number M2 and the variable ratios, 
since these are strictly functions of the upstream Mach number M1. 

�2 = ?�1

u2 = ?
u1 
p = ?p1 2


h1
 = ?h2 

2M 
2� 1� 
2 1p p 
2 1hh 

1= f(M ) 
1= f(M ) 
1= f(M ) 
1= f(M ) 

The starting point is the normal shock equations obtained earlier, with V = u for this 1-D 
case. They are also known as the Rankine-Hugoniot shock equations. 

�1u1 = �2u2 (3) 

�1u 2 
1 + p1 = �2u 2 + p2 (4)2 

1 2 1 2h1 + u1 = h2 + (5)u22 2 
� − 1 

p2 = �2h2 (6) 

Dividing the momentum equation (4) by the continuity equation (3) gives 

u
p1 p2 

1 + = u2 + 
�1u1 �2u2 

2 21 a2 a1 or u1 − u2 = − (7)
� u2 u1 

where we have substituted p/� = a2/� and rearranged the terms. 

Now we make use of the energy equation (5). For algebraic convenience we first define the 
constant total enthalpy in terms of the known upstream quantities 

1 2 1 2h1 + u1 � ho = h2 + u22 2 

2which then gives a2 and a2 in terms of u1 and u2, respectively. 1 

1 22 a1 = (�−1)h1 = (�−1) ho − u12 
1 22 a2 = (�−1)h2 = (�−1) ho − u22 

Substituting these energy relations into the combined momentum/mass relation (7) gives,

after some further manipulation 

� � 

u1 − u2 = 
�−1 

� 
ho 

u2 
− 

ho 

u1 
+ 

1 
2 

(u1 − u2) 
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Dividing by u1 − u2 produces 
� � 

�−1 ho 1 
1 = + (8)

� u1u2 2 

(�−1)ho �+1 
= 

u1u2 2 
(�−1)2h2 �+1 
2 

o = (9)
2 2u1 u 22 

Since ho = ho1 = ho2 , we can write 

�−1 2 �−12(�−1)2h2 = (�−1)ho1 (�−1)ho2 = a1 1 + M2 a2 1 + 
2 

M2
2 

o 2 1 

and using this to eliminate h2 from equation (9), and solving for M2, yields the desired o 

M2(M1) function. This is shown plotted for � = 1.4 . 

M
1 + �−1 M2 

2 = 2 1 (10)2 �−1�M1
2 
− 
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The M1 � 1+ , M2 � 1− limit corresponds to infinitesimal shock, or a sound wave. The 
M2(M1) function is not shown for M1 < 1, since this would correspond to an “expansion 
shock” which is physically impossible based on irreversibility considerations. 

Static jump relations 

�

The jumps in the static flow variables are now readily determined as ratios using the known 
M2. From the mass equation (3) we have 

2 
2 u1 u1 = = 

�1 u2 u1u2 

From the Mach definition we have 

2 2 u1 = M1
2 a1 = M2 (�−1)ho 

1 1 + �−1 M1
2 

2 
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and from equation (8) we have 

1 1 � +1 
= 

�

u1u2 (� −1)ho 2 

Combining these gives the shock density ratio in terms of M1 alone. 

2 (� +1)M 2 
1 = 

�1 2 + (� −1)M 2	 (11) 
1 

The combination of the momentum equation (4) and mass equation (3) gives 

− �2u 2 p2 − p1 = �1u 2 = �1u 2 1 − 
u2 

= �1u 2 1 − 
�1 

1 2 1	 1 u1	 �2 

which can be further simplified by using the general relation �u2 = �pM 2, dividing by p1, 
and then using (11) to eliminate �2/�1 in terms of M1. The final result for the shock static 
pressure ratio is 

p2 2�
M 2 

− 1	 (12) 
p1 

= 1 + 
� +1 1 

The static temperature or enthalpy ratio is now readily obtained from the pressure and 
density ratios via the state equation. 

T2 p2 �1 
= 

T1 p1 �2 

The result is	
� � 

T2 h2 2�
M 2 

� 2 + (� −1)M 2	

(13)= =	 − 1 
T1 h1 

1 + 
� +1 1 (� +1)M 2

1 

1 

The three static quantity ratios (11), (12), (13), are shown plotted versus M1. 
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