Lecture F15 Mud: Uniform flow, sources, sinks, doublets
(27 respondents)

1. In the freestream+source case, if V_{∞} increases, will the picture change? (1 student)
The streamline pattern depends only on the ratio Λ / V_{∞}. So let's say you double both Λ and V_{∞}, all the velocities will double, but the streamline pattern won't change. If you change only V_{∞}, then the streamline pattern will change.
2. How do we model more complicated flows like airfoils or wings? (2 students) With more complicated arrangements of sources, sinks, vortices, and doublets. The most complicated 3-D models might have thousands of sources or doublets. The necessary bookkeeping must be done by computer programs.
3. How do we select the source, sink, doublet, etc. required to model a specific flow? (2 students)
In our examples we superimposed a source or doublet of prescribed strength with a freestream of prescribed strength. We then obtained the shape of the implied body via the dividing streamline. In aerodynamic applications, the problem is somewhat in reverse - the shape of the body (airfoil or wing) is a given, and we have to determine out the source and doublet strengths which are necessary to produce a flow about the body. One technique for doing this is thin airfoil theorywhich we will address later in considerable detail. Other techniques are panel methods which are rather complicated, so we will only mention these in passing.
4. In the doublet construction, when is $\Lambda=+\kappa / \ell$, and when is $\Lambda=-\kappa / \ell$? (student)
The left source has positive $\Lambda=\kappa / \ell$, and the right source (sink, actually), has a negative $\Lambda=-\kappa / \ell$. We picked the signs this way to get a doublet which has the flow along the x-axis going to the left. Picking opposite signs would simply reverse the doublet's flow direction. A right-going doublet superimposed with a right-going uniform flow will not give the flow about a cylinder.
5. How do we know the value of κ so we can apply the results for the cylinder? (1 student)
You can set κ from the radius and freestream speed:

$$
\kappa=2 \pi R^{2} V_{\infty}
$$

6. How does ψ go to $-(\kappa / 2 \pi) \sin \theta / r$ in the limit? (1 student)

You gave to plug in the flowfield geometry, and take the limit. Andreson does this on pp. 221-222.
7. Does the $C_{p}(\theta)=1-4 \sin ^{2} \theta$ correspond to what we will plot for our lab? (1 student)
Yes, it's one of the curves.
8. What makes this flow non-lifting? (1 student)

It's symmetrical between top and bottom, so there's no net y-force.
9. How do you take friction into account? (1 student)

Predicting viscous separated flow on a bluff body like the cylinder is extremely difficult. In contrast, prediction of viscous flow about a streamline shape is much easier and faster. Either one is beyond the scope of Unified Fluids, however. This is addressed to some extent in 16.110 (Senior/Grad aerodynamics course), and in a few other courses.
10. Confused about PRS question at the end. How did you get $h=\Lambda / V_{\infty}$? (6 students)
The source's contribution to the velocity decreases with distance as $1 / r$. Hence, the velocity very far downstream is just $V_{\infty} \hat{\imath}$ (i.e. only the freestream part), since far away the contribution of the source decreases to nothing.
The volume flow rate between the two streamlines is therefore computed to be $\dot{v}=$ $\oint \vec{V} \cdot \hat{n} d A=V_{\infty} h$. But the volume flow rate between the two streamlines is equal to Λ, which is what the source cranks out. Hence $\dot{v}=V_{\infty} h=\Lambda$, or $h=\Lambda / V_{\infty}$. I apologize again for the typos on the PRS answer list.
11. No mud (10 students)

