
F19 – Lecture Notes

1. Flowfield prediction

2. Source and Vortex Sheets

Reading: Anderson 3.17

Flowfield Prediction

Problem definition

The flowfield examples used so far were used to demonstrate the basic ideas behind the
method of superposition. We chose some combination of elementary flows (uniform flow,
sources, vortices, etc.), and then determined the resulting flowfield. The corresponding body
shape was determined from the shape of the dividing streamline. However, such an approach
is not practical for engineering applications, where we want to specify the body shape, rather
than have it as an outcome. The problem can therefore be stated as follows.

Given: Body shape Y (x), Freestream velocity πV
�

Determine: Superposition of suitable elementary flows which produce the velocity field
πV (x, y) about the body.

It turns out that sources, vortices, and doublets are not ideally suited to this task because
of their strong singularities. The constraint that these singularities must be inside the body
is difficult to meet, especially if the body is very slender. For this reason we now define
slightly more elaborate elementary flows which are smoother, and therefore better suited to
representing smooth bodies.

Source Sheets

Definition

Consider a sequence of flows where a single source of strength � is repeatedly subdivided
into smaller sources which are evenly distributed along a line segment of length λ. The limit
of this subdivision process is a source sheet of strength � = �/λ.
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The units of � are length2/time, while the units of � are length/time (or velocity). Note
that the total source strength is not changed in this process.

The limiting process shown above has assumed that the sheet is straight, and that the
sources are uniformly subdivided and uniformly distributed along the sheet. Neither of
these assumptions are required. The subdivided sources can be distributed along any chosen
curve, in any chosen density. Hence, the source sheet can be curved, and its strength � can
vary along the sheet.
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Properties 
Consider an infinitesimal length ds of the sheet. The infinitesimal source strength of that 
piece is d� = � ds, and the corresponding potential at some field point P at (x, y) is 

d� � 
d∂ = ln r = ln r ds 

2� 2� 

where r is the distance between point (x, y) and the point on the sheet. 

ds 

� �d = ds 
�(s) 

r (x,y) 

d � 
P 

0 l 
The potential of the entire sheet at point P is then obtained by integrating the infinitesimal 
contributions all along the sheet. 

∂(x, y) = ln r ds 
0 2� 

The shape of the sheet and the �(s) distribution must be specified before this integral can 
be evaluated. The velocity of the sheet is then obtained by taking the gradient of the result. 
Note that to build up the entire flowfield, the integral must be evaluated for each point P in 
the xy plane. In practice this is not necessary, since for engineering purposes the velocity is 
required only at a small set of points, such as on the surface of a body to allow computation 
of the pressure and the resultant force. 

Consider now a simpler straight source sheet extending from (−λ/2, 0) to (λ/2, 0), with a 
constant strength �. y 

P 

x x 
ds 

y 
� 

−l/2 s l/2 
The potential and the velocity components at point P are given by 

� �/2 � 
∂(x, y) = ln (x − s)2 + y2 ds 

2� −�/2 
� �/2 �

� �/2�∂ � � � x − s 
u(x, y) = = ln (x − s)2 + y2 ds = ds 

�x 2� −�/2 �x 2� −�/2 (x − s)2 + y2 

� �/2 �

� �/2 y�∂ � � � 
v(x, y) = = ln (x − s)2 + y2 ds = ds 

�y 2� −�/2 �y 2� −�/2 (x − s)2 + y2 

These integrals can be evaluated, although the resulting expressions are cumbersome, and 
not too important for our purposes here. The really interesting result is for the normal 
velocity v(x, y) very close to the sheet. After the necessary integration, we find that 

V · ˆπ n = lim v(x, y) = 
� y 

= ± 
y�0 2 |y| 2 
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The normal velocity is then simply a constant �/2 directed outward, or +�/2 above the

V   n =  ^.  �/2  
V  �

sheet, and −�/2 below the sheet.

The advantage of using source sheets rather than sources to represent a flowfield is illustrated
in the figure below, which shows source sheets superimposed on a uniform flow to the right.
In each case the sheet’s strength � is set so as to cancel the freestream’s component normal to
the sheet, giving a net zero normal flow. Hence, the sheet is ideally suited for representing a
solid surface of a body, since it can impose the physically necessary flow-tangency condition
πV · n̂ = 0 by suitably adjusting the sheet’s strength �.

Modeling approach

The fact that the velocity field of a source sheet is smooth, without the troublesome 1/r
singularity of a point source, allows us to place some number of such sheets (or panels) end
to end on the surface of the body. We then determine the strengths �j of all the panels
j = 1, 2, . . . n such that the flow is tangent everywhere on the surface of the body. The
superposition also incidentally produces some flow inside the body, but this is not physical
and is simply ignored.

� j
�2

�1
V

�n

uniform flow  +  n  source panels resulting flowfield

This use of source sheets in this manner to represent a flow is the basis of the panel method ,
which is widely used to compute the flow about aerodynamic bodies of arbitrary shape. The
approach presented here is actually suitable only for non-lifting bodies such as fuselages.
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For airfoils, wings, and other lifting bodies, vortices must be added in some form to enable 
circulation to be represented. This modification will be treated later. 

Solution technique 
It is important to realize that each panel strength �j cannot be set independently of the 

πothers. With more than one panel present, the velocity V and hence the flow tangency 
V · ˆcondition π n = 0 at any point i on the surface is influenced not only by that panel’s �i, 

but also by the strengths �j of all the other panels. In tensor notation this can be written 
as 

π n = Aij �j + V · ˆV · ˆ π n 
i 

where Aij is called the aerodynamic influence matrix , which can be computed once the 
geometry of all the panels is decided. 

V 

V 

V 

P 

P 

i 

j� 

V · ˆRequiring that π n = 0 for each of the n panel midpoints gives the following. 

Aij �j = −π niV · ˆ

This is a n × n linear system for the �j unknowns, which can be solved numerically using 
matrix solution methods such as Gaussian elimination. With the �j determined, the velocity 
and pressure (via Bernoulli) can then be computed at any point in the flowfield and on the 
surface of the body. Forces are then computed by integrating the surface pressures. This 
completes the aerodynamic analysis problem. 
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