
F14 – Lecture Notes 
1. Normal Shock Waves 

2. Speed of Sound 

Reading: Anderson 8.1 – 8.3 

Normal Shock Waves 
Occurance of normal shock waves 
A normal shock wave appears in many types of supersonic flows. Two examples are shown 
in the figure. Any blunt-nosed body in a supersonic flow will develop a curved bow shock , 
which is normal to the flow locally just ahead of the stagnation point. Another common 
example is a supersonic nozzle flow, which is typically found in a jet or rocket engine. A 
normal shock can appear in the divering part of the nozzle under certain conditions. 

M 

Bow Shock 

M>1 

Nozzle Shock 

Shock jump relations 
We examine the flow in the frame in which the shock is stationary. The upstream and 
downstream flow properties are denoted by the subscripts ()1 and ()2 as shown in the figure. 
A control volume is defined straddling the shock. The flow in the shock has the following 
properties: 

1. Flow is steady, so �()/�t = 0 in all equations. 

2. Flow is adiabatic, so q̇ = 0. 

3. Body forces such as gravity are negligible, so ∂g is neglected. 

The flow is also assumed irreversible due to viscous forces acting in the exremely large velocity 
gradients in the thin shock, although this doesn’t explicitly influence the analysis. We now 
apply the integral conservation equations to the control volume. The flow is 1-dimensional 
in the x-direction normal to the shock, so that ∂V = uı̂. There is no flow through the top 
and bottom boundaries, since ∂ · ˆV n there. 
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Mass continuity 
� � ∂ ˆV ·n dA = 0 

−�1u1A + �2u2A = 0 

�1u1 = �2u2 (1) 

x-Momentum 
� � ∂ ˆ n · ̂ı dA = 0V ·nu dA + � pˆ

2 2A + �2u2
A − p1A + p2A = 0−�1u1

2 = �2u2 + p2 (2)�1u1 + p1

2 

Energy 
� 
�� 

� ∂V · ̂nh o dA = 0 

−�1u1h o1 A + �2u2h o2 A = 0 

h o1 = h o2 

h1 + 
1 
2 
u 2 

1 = h2 + 
1 
2 
u 2 

2 (3) 

Equation of State � − 1 
p2 = �2h2 (4) 

Simplification of the energy equation (3) makes use of the mass equation (1). In most shock 
flow analysis situations, the upstream supersonic flow quantities at station 1 are known, 
either from the freestream conditions or from the flow about some upstream body. The four 
equations (1)–(4) then are sufficient to determine the four downstream flow quantities �2, 
u2, p2, and h2. The temperatures T1 and T2 can be considered additional variables, but for 
a perfect gas these are trivially related to h1 and h2 through h = c p T . 

Speed of Sound 
Sound wave 
Before solution of (1)–(4) is carried out for a general shock wave, we first consider an in­
finitesimally weak shock wave, also known as a sound wave. Because the velocity gradients 
and hence the viscous action is small, the flow process through the wave is isentropic. 

h h+dh 

1 � u=a a+da �+d� 2 
p p+dp 

stationary 
sound wave 

Rather than treating the 1 and 2 variables, we instead examine their infinitesimal differences 
d�, dp, . . . . We also define u for this case to be the speed of sound (yet unknown), and 
denote it with a separate symbol a. The objective here is to determine this a in terms of the 
other variables by applying equations (1) – (4). 
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Speed of sound derivation 
The mass equation (1) for the sound wave case becomes 

�a = (� + d�)(a + da) = �a + a d� + � da 
a 

da = − d�	 (5) 

where the higher-order term d� da has been dropped. Similarly for x-momentum we have 

�a2 + p = (� + d�)(a + da)2 + (p + dp) = �a2 + a 2 d� + 2a� da + p + dp 

0 =	 2a� da + a 2 d� + dp (6) 

Using equation (5) to eliminate da from (6) gives 

a 
0 = 2a� − d� + a 2 d� + dp 

0 =	 −a 2 d� + dp 
dp

2 a =	 (7)
d� 

We could now relate p and � and thus get dp/d� using the energy and state equations (3) and 
(4). But an algebraically simpler approach is to use one of the isentropic relations instead, 
which are valid for this weak wave. The simplest relation for this purpose is 

p2 �2 
= 

p1 �1 

p + dp � + d� 
or	 = 

p � 

dp d�	 d� 
1 + = 1 + = 1 + � + h.o.t. 

p �	 � 
dp d� 
p � 
dp p 

= � = �RT 
d� � 

Combining this with equation (7) gives the speed of sound as 

�p 
a = = �RT 

which can be seen to depend on the temperature alone. 
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