Lecture F14 Mud: Normal Shock Waves, Speed of Sound

1. What does "h.o.t." mean? (1 student)

Higher Order Terms. Stuff like $d\rho da$, du^2 , which become neglible relative to $d\rho$ or da in the infinitesimal limit.

2. What are the small-shock equations used? (1 student)

For determining the speed of sound a, like we did in class. Also for describing the propagation of sound waves in general.

3. What in the infinitesimal-wave analysis becomes invalid for finite waves? (1 student)

The assumption of isentropic flow becomes invalid. Also, the speed of sound a is the speed of weak waves. Finite shock waves travel at a greater speed $V_s > a$.

4. Confused about different frames when looking at the shock. (1 student) Tough to go over without a board. Maybe in recitation.

5. Does the bow shock cause high drag on a blunt nose at supersonic speeds? (1 student)

Yes! That's why supersonic airplanes have pointy noses. Re-entry vehicles are blunt for several reasons, one of them being the fact that high drag is desirable for slowing down during re-enetry.

6. What does "breaking the sound barrier" mean? (1 student)

Not much, nowadays. Before 1945, this "barrier" was considered as a technological barrier, rather than something the pilot had to "break".

7. No mud (4 students)