
Introduction to Computers and
Programming

Lecture 3

General structure of Ada
programs

with ...;

procedure program_name is

declare constants & variables used

begin

statements

end program_name;

Prof. I. K. Lundqvist

Reading: B pp. 217-228; FK pp. 65-111 Sept 9 2003

-- header

-- program_name

General structure of Ada
programs

with Ada.Text_Io;
procedure Hello_Name is

--| Last Modified: June 1998

FirstName: String(1..10);

begin

Ada.Text_IO.Put
(Item =>);

Ada.Text_IO.New_Line;
Ada.Text_IO.Put
(Item =>);

Ada.Text_IO.Put(Item => "Hello ");

Ada.Text_IO.Put(Item => ". Enjoy studying Ada!");
Ada.Text_IO.New_Line;

end Hello_Name;

Modules

–

•
–

•
–

•
•
•
•
•

–
•
•

--
--| Requests, then displays, user's name
--| Author: Michael Feldman, The George Washington University

-- object to hold user's name

-- Hello_Name

-- Prompt for (request user to enter) user's name

"Enter your first name, exactly 10 letters."

"Add spaces at the end if it's shorter.> "
Ada.Text_IO.Get(Item => FirstName);

-- Display the entered name, with a greeting

Ada.Text_IO.Put(Item => FirstName);

• Procedure
Abstracts an operation

Package
Collects related operations and data types

Advantages of modules
Procedures

Functional abstraction
Top-down development
Reduced complexity
Parallel development
Avoid duplication

Packages
Shared resources
Improved productivity

• Improved quality

Procedure

"ADA" in giant letters would be written
as a monolithic program. Then we look
at it when it is broken into procedures.
You can see that a procedure only
needs to be written once, and can then
be invoked as many times as
necessary. The resultant shortening of
the program is one of the benefits of
procedures.

Programs and packages

packages

• First we see how a program to write

• Giant_ada_1.adb, giant_ada_2.adb

• Package
– Collection of resources
– Encapsulated in one unit
– Ex: Text_IO, Calendar, user-defined

• Used for:
– Collection of types and constants
– Group of related subprograms
– User defined types and allowable operation

Reserved words and identifiers

•
– begin

elsif end entry exception exit for function
is limited loop mod new not

null of or others out package
procedure

then type use when while with xor

•
–

Natural New_Line Open Put Put_Line
Positive Read Reset Skip_Line String Text_Io True
Write

Layout conventions

programs easier for others to read,
understand (and mark!)

program

program

Reserved words
abort abs accept access all and array at
body case constant declare delay delta digits else

generic goto if in
pragma private

raise range record rem renames return
reverse select separate subtype task terminate

Pre-defined words
Boolean Character Close Create Delete False Float
Get Integer

• Common layout convention makes

• Basic conventions
– One statement (one thought) per line
– Break long lines into readable segments
– Indent lines to show different parts of

– Blank lines separate parts of the program
– Comments help readers understand

•
–
–
–
–

•
–
–
–
–
–
–

Types of statements
Input/Output, Assignment, Control statements

Ada.Text_Io
: Ada.Integer_Text_Io

: Ada.Float_Text_Io
define new library

type Colors is(white, black, red, purple);

package Color_Io is
new Ada.Text_Io.Enumeration_Io (Enum => Colors);

One_Color : Colors;

begin

Color_Io.Get (Item => One_Color);

-- Comments
Good comments:

are always correct and up to date
conform to usual conventions of prose
provide information not immediately obvious
describe the intended effect of (part of) the program

Minimum comments in any program:
the name of the program
who wrote it and when
description of what the program does
description of any constants or variables
description of purpose of each segment of code
assumptions made (precondition / postcondition)

• Input/Output libraries
• Text:
• Integer
• Float
• Own type:

-- procedure_name

Types of statements
Input/Output, Assignment, Control statements

Input
• Get (argument)

values

variable

Put (Item => “Please enter the first number: “);
Get (Item => Number1);

Types of statements
Input/Output, Assignment, Control statements

• Skip_Line

Put (Item =>
“Please enter the first number “);

Get (Item => Number1); Skip_Line;

Put (Item =>
“Please enter the second number “);

Get (Item => Number2); Skip_Line;

Please enter the first number 42 10
Please enter the second number 23

When prompting for values from a user,
always follow Get with Skip_Line

– Argument is a variable that receives input

– Value must be same type (e.g., integer) as

– Advance to next line, ignoring unused input

Types of statements
Input/Output, Assignment, Control statements

Output

• Put(Item =>
“Please enter the first number: “);

Get(Item => Number1); Skip_Line;

Please enter the first number: 42

Types of statements
Input/Output, Assignment, Control statements

Put(int_val, Width => positive_integer);

Put ("The sum of the numbers is:");
Put (Number1+Number2, Width=>7); New_Line;
Put ("The product of the numbers is:");
Put (Number1*Number2, Width=>3); New_Line;
Put ("The sum of the numbers is:");
Put (Number1+Number2, Width=>1); New_Line;

The sum of the numbers is: 14
The product of the numbers is: 48
The sum of the numbers is:14

• Put (argument)
– Print argument
– Leave the cursor on the same line

• Formatted output

Types of statements
Input/Output, Assignment, Control statements

Put(real_val, Fore => positive_integer,
Aft => positive_integer,
Exp => positive_integer);

Put (23.456);
Put (23.456, Exp=>0);
Put (23.456, Aft=>3, Exp=>0);
Put (23.456, Aft=>2, Exp=>0);
Put (23.456, Fore=>3, Aft=>3, Exp=>0);

' 2.34560000000000E+01'
'23.45600000000000'
'23.456'
'23.46'
' 23.456'

Types of statements
Input/Output, Assignment, Control statements

variable

– Total_Num := Number1 + Number2;

• Assignment
– Perform calculation and save result in a

Data types
Storing data values

• A variable has a

represent?

values can the variable have?
operations can be performed on it?

Data types
Storing data values

• Constants are data values that does
not change
–Name : constant Type := Value;

Answer : constant String := "forty two";
Medicare_Rate : constant Float := 1.4;
Pi : constant Float := 3.1415926536;

English_Drink := Metric_Drink * 0.568;

Liters_To_Pints : constant Float := 0.568;
English_Drink := Metric_Drink *

Liters_To_Pints;

– Name
• An Identifier
• What does the variable

– Data type
• What
• What

– Main pre-declared data types in Ada
• Integer
• Float
• Character
• String
• Boolean

Data types
Storing data values

strong typing
– 3 + 4
3.0 / 4.0
1.0 > 0
3 * 4.0

Mixed arithmetic: must convert one type to another
1.0 > FLOAT(0)
FLOAT(3) * 4.0
3 * INTEGER(4.0)

Data types
Integer type

no decimal
part

354 -52689 +4432

– Integer’First :smallest integer on given system
Integer’Last :largest integer on given system

– Put ("The lowest integer value is: ");
Put (Integer'First); New_Line;

• Ada has

• Positive or negative number with

• Range of integers

Data types
Integer type

-int_val

division 23 / 4 = 5
remainder 23 rem 4 = 3

4 = -3
modulus -23 mod 4 = 1

23 mod -4 = -1
exponentiation 2 ** 4 = 16

= /= < > <= >=

• arithmetic
– unary minus (negation)
– absolute value abs int_val

+ - * / mod rem **

-23 rem

• relational:

