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Lecture F10 Mud: Momentum Theorem Applications 
(37 respondents) 

1. What’s the difference between D()/Dt and d()/dt ? (1 student) 
What we’re after is the time rate of change of some flowfield quantity like p(x, y, z, t), 
as seen by a sensor moving as a fluid element. Just writing dp/dt is very sloppy math, 
since p depends on four variables x, y, z, t, not just on t. So we must work with the 
four partial derivatives of p. The correct expression for the time rate of change seen 
by the sensor is 

∂p ∂p ∂p ∂p 
+ u + v + w 

∂t ∂x ∂y ∂z 

but this is long and tedious to write. So we use the shorthand Dp/Dt for this whole 
expression. 

2. Not clear how Dρ/Dt differs from ∂ρ/∂t. (2 students) 
The partial derivative ∂ρ/∂t merely gives the rate of change of density seen by fixed 
sensor sitting at one particular x, y, z location. But we’re after the rate seen by a sensor 
which moves with the flow velocity, so the sensor’s x, y, z are continually changing. 
Using the chain rule then brings in the three spatial partial derivatives ∂ρ/∂x, y, z 
whose contributions are added to the ∂ρ/∂t term. See point 1 above. 

3. Why does time dependence depend on where you’re at? (1 student) 
Look at the first figure in the F10 notes and try to see why the p1(t) signal has a different 
shape than the p2(t) signal. In particular, we’re after the t derivative of a signal, which 
are different for the two sensors, even when the sensors are instantaneously at the same 
point. 

4. What is the substantial derivative used for? (3 students) 
A physicist might use it for formulating equations which describe some physical process 
happening to a fluid element (combustion, precipitate formation, heat conduction, . . . ). 

An experimentalist might use it to determine fluid accelerations from the ~V (x, y, z, t) 
field measured in the lab frame. A computational aerodynamicist might use it to 
formulate the equations of motion to allow numerical solution, etc, etc, etc. 

5. What are some example applications? (2 students) 
In the current problem set you will use D/Dt to deduce the pressure field from a given 
velocity field. We will come back to it occasionally later in the course. 

6. What is ~Fviscous? How do you calculate it? (2 students) 

Fviscous is the force applied to the control volume boundary by viscous stresses, the 
main one being the viscous shear stress τ . The full expression for ~Fviscous using the 
velocities and viscosity is long and tedious, and not really important at this point. We 
will look at it in detail later in the course when dealing with viscous flows. 

7. How do you know that −∂p/∂x + ρg
x 

+ (F 
x
)viscous is force/volume? (1 student) 

First of all, the units of each term is N/m3, which is one clue. Second, the pressure 
gradient also appears in the primary hydrostatic buoyancy equation: 

(F 
x
)buoyancy = −(∂p/∂x) × volume 
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which clearly shows that −∂p/∂x is equal to the applied force/volume. 

8. Clarify the interpretations of Control-Volume vs. Substantial Derivative 
forms of continuity. (3 students) 
Look at the last figure in the F10 notes to help visualization. See also mud point 2 
above. The control-volume (CV) form is 

∂ρ 
= −∇ · ρ~V 

∂t 

or . . . “The rate of change of mass inside a fixed CV is equal to the mass flow out of

the CV, all per unit volume”


The substantial derivative form is


1 Dρ 
= −∇ · V 

ρ Dt 

or . . . “Fractional rate of change of density of a moving fluid element is equal and 
opposite to the expansion rate of the fluid element” 

9. When asked to find the derivative (.e.g acceleration), will it be specified 
what the sensor motion should be? (1 student) 

The substantial derivative (sensor moves with local ~V ) is the only physically-meaningful 
way to get the acceleration of the fluid, if you want to apply F = ma for instance. In 
practice, physical considerations dictate how the derivative should be defined. 

10. Can the substantial derivative be used to get 2nd derivatives? (1 student) 
Yes, but it’s not necessary in practice, since second time derivatives do not appear 
in physically-derived equations of fluid motion. Second derivatives like ∂2()/∂t2 might 
appear, but only after some elaborate mathematical manipulations of the equations. In 
8.01, for example, F = ma could have been written as dF/dt = m da/dt = m d2u/dt2 , 
but the d2u/dt2 here is completely artificial. 

11. Many sections in Chapter 3 of Anderson apply to Pset questions. Can you 
add these to the reading list? (1 student) 
Chapter 2 is for “tool building”, while Chapters 3 onward are more concerned with 
applications of these tools. If you find it helpful to read ahead, then by all means do 
so. It’s not practical for me to assign reading not only for the basic material, but also 
all later applications which appear in the book. The reading list for each lecture would 
be huge, with lots of material extraneous to what we’re trying to focus on. 

12. No mud (15 students) 


