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F19 – Lecture Notes 
1. Compressible Channel Flow 

Reading: Anderson 10.1, 10.2 

Compressible Channel Flow 
Quasi-1-D Flow 
A quasi-one-dimensional flow is one in which all variables vary primarily along one direction, 
say x. A flow in a duct with slowly-varying area A(x) is the case of interest here. In practice 
this means that the slope of the duct walls is small. Also, the x-velocity component u 
dominates the y and z-components v and w. 
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Governing equations 
Application of the integral mass continuity equation to a segment of the duct bounded by 
any two x locations gives 

V ·n dA = 0� �� ˆ
x 

−�1 u1 dA + �2 u2 dA = 0

1 2


−�1 u1 A1 + �2 u2 A2 = 0 1 2 

The quasi-1-D approximation is invoked in the second line, with u and � assumed constant 
on each cross-sectional area, so they can be taken out of the area integral. 

Since stations 1 or 2 can be placed at any arbitrary location x, we can define the duct mass 
flow which is constant all along the duct, and relates the density, velocity, and area. 

˙�(x) u(x) A(x) � m = constant (1) 

If we assume that the flow in the duct is isentropic, at least piecewise-isentropic between 
shocks, the stagnation density � o and stagnation speed of sound a o are both constant. This 
allows the normalized � and u to be given in terms of the Mach number alone. 
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The figure shows these variables, along with the normalized mass flux , or �u product, all

plotted versus Mach number.


The significance of �u is that it represents the inverse of the duct area, or


1 
A � 

�u 

It is evident that the maximum possible mass flux occurs at a location where locally M = 1. 
This can be proven by computing 
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which is clearly zero at M = 1. Therefore, the duct must have a local minimum, or throat , 
wherever M = 1. 

Sonic conditions 
In the development above, the stagnation conditions � o and a o were used to normalize the 
various quantities. For compressible duct flows, it is very convenient to also define sonic 
conditions which can serve as alternative normalizing quantities. These are defined by a 
hypothetical process where the flow is sent through a duct of progressively reduced area 
until M = 1 is reached, shown in the figure along with the familiar stagnation process. 
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The resulting quantities at the hypothetical sonic throat are denoted by a ()� superscript. 
The advantage of the sonic-flow process is that it produces a well-defined sonic throat area 
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A�, while for the stagnation process A tends to infinity, and cannot be used for normalization. 
The ratios between the stagnation and sonic conditions are readily obtained from the usual 
isentropic relations, with M = 1 plugged in. Numerical values are also given for � = 1.4 . 
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The sonic flow area A� can be obtained from the constant mass flow equation (1). For the 
sonic-flow process we have 

�ṁ = �uA = u �A� 

and we also note that u = a since M = 1 at the sonic throat. Therefore, 

�� � �� �A a � o a a o 
= = 

A � u � o � a o u 

Using the previously-defined expressions produces 
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This is the area-Mach relation, which is plotted in the figure below for � = 1.4, and is also 
available in tabulated form. It uniquely relates the local Mach number to the area ratio 
A/A�, and can be used to “solve” compressible duct flow problems. If the duct geometry 
A(x) is given, and A� is defined from the known duct mass flow and stagnation quantities, 
then M (x) can be determined using the graphical technique shown in the figure, or using 
the equivalent numerical table. 
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Once M (x) is determined, any remaining quantity of interest, such as �(x), u(x), p(x), etc., 
can be computed from the isentropic or adiabatic relations such as (2) and (3). 

Note that for any given area A(x), two solutions are possible for the given mass flow: a 
subsonic solution with M < 1, and a supersonic solution with M > 1. Which solution 
corresponds to the actual flow depends on whether the flow upstream of that x location is 
subsonic or supersonic. 

There is also the possibility of shock waves appearing in the duct. This introduces additional 
complications which will be considered later. 
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