Introduction to Computers and
Programming

Prof. I. K. Lundqvist

Lecture 14
April 21 2004

Outline

e Bhorbugs and Heisenbugs

e Designing Large Programs
— Software design quality
— Modularity
— Design by Contract

Real Bugs and Software Bugs

 Bugs adjust to the level of experience
of the programmer

e Bugs invade the test environment

e Bugs replace previously caught bugs

Taxonomy of Bugs

» Reproducible bugs / Bohrbugs
e Unreproducible / Heisenbugs

e Tasking /Timing bugs

Reproducible Bugs/ Bhorbugs

Always cause a failure and can be reproduced

Try explaining what should be happing

e Verbalization often clarifies muddled thoughts

e Have a friend do a quick sanity check

e Don’t randomly change things, your actions
should have a purpose

Heisenbugs

A bug that disappears or changes behavior
when you are trying to track it down

e Try to make the bug reproducible by switching
platforms

e Insert checks for invariants and have the
program stop everything when one is violated

e Verify each layer with small, simple tests

e Find the smallest system which demonstrates
the bug

6

Tasking / Timing Bugs

e Synchronization properties are not
specified

e Unconditional waits

e Deadlocks and races

Software Design Quality

e What is quality?
— Construction quality
— Aesthetic quality
— Fit for purpose?
e How can we measure quality?

» Design quality : Fitness to purpose
e Quality is a measure of Software
together with its application domain

—Requirements analysis
—Quality predictors

Quality Predictors

e Simplicity
— Meets its objectives, without any extra
decorations
— Look for complexity
e Control flow complexity
» Information flow complexity
» Name space complexity

Quality Predictors

e Modularity is a logical partitioning of
the software design that allows complex
software to be manageable for purposes
of implementation and maintenance

l— Coupling

* Property of a collection of modules

I — Cohesion
* Property or characteristic of an individual module

10

Coupling

e Coupling indicates:
—how closely two modules interact
or how interdependent they are

—the degree of coupling between
two modules depends on their
iInterface complexity

11

Classes of Coupling

low 7/ best
data
stamp
control
common
content v

high /7 worst

12

Coupling

e Data coupling: Two modules are data
coupled if they communicate via a
parameter (+++)

e Stamp coupling: Two modules are stamp
coupled if they communicate through a
composite data structure (+)

e Control coupling: Data from one module
IS used to control the direction of the
execution in the other module (0)

13

Coupling

e Common Coupling: Two modules are
said to be common coupled when both
reference the same shared/global data

)

e Content Coupling: Two modules are
said to be content coupled when they
share code (---)

14

Concept Question

Test _stack.adb and my_stack package are:

1. Not Coupled

2. Are Content Coupled

3. Stamp Coupled

4. 1 still don’t understand coupling

15

Classes of Cohesion

Best 7/ high

A

functional
sequential
communicational

Degree of
procedural cohesion

temporal
logical
coincidental

Worst / low

16

Cohesion

e Coincidental cohesion exists
when subprograms in the module
relate to each other very loosely, if
at all (---)

e Logical cohesion exists when all
elements in the module perform
similar operations (---)

17

Cohesion

e Temporal cohesion exists when a
module contains tasks that must
be executed within the same time
span (+)

e Procedural cohesion exists when
the subprograms in the module are
part of the same algorithm (+)

18

Cohesion

Communication cohesion exists when
all subprograms in the module
reference or update the same data
structure (+)

Sequential cohesion exists when
elements of a module form different
parts of a sequence, i.e., output from
one element of the sequence is input to
the next (++)

19

Cohesion

e Functional cohesion exists when
all subprograms in the module
cooperate to achieve a single
function (+++)

Effects: initialize the data structures and initialize the screen display and

initialize the history stack and initialize the layout defaults and
display an introductory text

Describe the functions in a single sentence

Effects: if x =0 then returns size(a[]) else if x=1 then returns sum(a[])

else if x=2 then returns mean(a[]) else if x=3 then returns median(a[])

20

Concept Question
my _stack package has:

1. Logical cohesion
2. Functional cohesion
3. No Cohesion

4. | still don’t understand cohesion

21

