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F8 – Lecture Notes 
1. Momentum Flow 

2. Momentum Conservation 

Reading: Anderson 2.5 

Momentum Flow 
Before we can apply the principle of momentum conservation to a fixed permeable control 
volume, we must first examine the effect of flow through its surface. When material flows 
through the surface, it carries not only mass, but momentum as well. The momentum flow 
can be described as 

−� −� 
momentum flow = (mass flow) × (momentum /mass) 

where the mass flow was defined earlier, and the momentum/mass is simply the velocity 
vector ∂V . Therefore 

−� � 
 
∂ ˆ˙ ∂ V Vmomentum flow = m V = � V ·n A ∂ = � VnA ∂

∂ ˆwhere Vn = V ·n as before. Note that while mass flow is a scalar, the momentum flow is a 
vector, and points in the same direction as ∂V . The momentum flux vector is defined simply 
as the momentum flow per area. 

−� 
∂momentum flux = � Vn V 
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Momentum Conservation 
The most general statement of Newton’s second law is 

d∂ ∂F = maV 
dt 

which states that a force applied to affected mass ma results in a rate of increase of momentum 
of that mass. For a fixed control volume situation, however, the affected mass ma in the 
equation above involves not only to the mass inside the volume, but to mass which is in the 
process of flowing in or out of the volume. 
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The figure shows what happens during an infinitesimal time interval dt during which a force 
∂ ∂F is applied to the fluid in the fixed control volume. The resulting impulse F dt involves 
three pieces of momentum change: 

∂d mV = change in momentum inside the volume

∂
dmo Vo = momentum of mass dmo which was inside volume, and moved out 
∂dmi Vi = momentum of mass dmi which was outside volume, and moved in 

t t + dt 
dmoVo 

mV 
mV + d(mV) 

F dt 
Vdmi i 

Before impulse After impulse 

The impulse is applied to the material which is inside the volume at initial time t. Proper 
momentum accounting then adds the dmo part, and removes the dmi part. 

∂ ∂ ∂ ∂F dt = d mV + dmo Vo − dmi Vi 

The equivalent equation in terms of rates of change is 

d∂ ∂ ˙ ∂F = mV + m V (1)
dt 

where the ˙ m > 0m term combines the outflow and inflow terms, with the understanding that ˙
for outflow, and m < 0 for inflow. ˙

Applied forces 

The force ∂F can be of two types. 

Body forces. These act on fluid inside the volume. The most common example is the gravity 
force, along the gravitational acceleration vector ∂g. 

∂Fgravity = � ∂g dV 

Surface forces. These act on the surface of the volume, and can be separated into pressure 
and viscous forces. �� 

∂ n dA Fpressure = �−p ˆ

The viscous force is omplicated to write out, and for simplicity will simply be called ∂Fviscous. 
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The remaining terms in equation (1) are given as volume and surface integrals. 

Integral Momentum Equation 

Expressing all terms in the momentum statement (1) as either surface or volume integrals 
gives the Integral Momentum Equation. 

d 
� ∂ ∂ ˆ ∂ n dA = �∂g dV + Fviscous (2)V dV + � � V ·n V dA + � p ̂ ∂

dt 

Along with the Integral Mass Equation, this equation can be applied to solve many problems 
involving finite control volumes. 

Differential Momentum Equation 

The pressure surface integral in equation (2) can be converted to a volume integral using the 
Gradient Theorem. �� ��� 

� p ̂n dA = �p dV 

The mass-flow surface integral is also similarly converted using Gauss’s Theorem. This 
integral is a vector quantity, and for clarity the conversion is best done on each component 

V ˆseparately. After substituting ∂ = u ı̂ + v �̂ + w k, we have 

∂ ˆ ˆ� � V ·n u ı̂ + v �̂ + w k dA = ı̂ � · � ∂V u dV 

+ �̂ � · � ∂V v dV 

ˆ V w dV+ k � · � ∂

The x-component of the integral momentum equation (2) can not be written strictly in terms 
of volume integrals. 

V 
�(�u)

+ � · 
� 
�u∂


 
+ 

�p 
− �gx − (Fx)viscous dV = 0 (3)

�t �x 

This relation must hold for any control volume whatsoever. If we place an infinitesimal 
control volume at every point in the flow and apply the above equation, we can see that the 
whole quantity in the brackets must be zero at every point. This results in the x-Momentum 
Equation 

V 
�(�u)

+ � · 
� 
�u∂


 
= −

�p 
+ �gx + (Fx)viscous (4)

�t �x 
and the y- and z-Momentum Equations follow by the same process. 

V 
�(�v)

+ � · 
� 
�v∂


 
= −

�p 
+ �gy + (Fy )viscous (5)

�t �y 

V 
�(�w)

+ � · 
� 
�w∂


 
= −

�p 
+ �gz + (Fz )viscous (6)

�t �z 
These three equations are the embodiment of the Newton’s second law of motion, applied 
at every point in the flowfield. The steady flow version has the �/�t terms omitted. 
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