Lecture F08 Mud: Wing Geometry, Wing Design

1. For what airfoils is $\Gamma(y)=\Gamma_{0} \sqrt{1-(2 y / b)^{2}}$ valid? What is Γ_{0} ? (1 student) $\Gamma(y)$ is defined for the whole wing, not an airfoil. In a design problem, you can pick $\Gamma(y)$ to be whatever you want.
2. How did you decide on the elliptic wing shape for Choice 1? (1 student) I didn't pick the wing shape for Choice 1. I picked a constant c_{ℓ}, and the elliptic wing was a result.
3. How would you do the design if you wanted $c(y)$ to have a specific shape? (1 student)
Just do it. Specify the $c(y)$ you want. If you already picked a load distribution with $\Gamma(y)$, you then have enough info to determine c_{ℓ} and $\alpha_{\text {geom }}(y)$.
4. What are $\alpha_{\text {geom }}$ and $\alpha_{\text {aero }}$? (1 student)

See the figure in the notes. They both describe the wing twist, but $\alpha_{\text {aero }}$ also includes the zero-lift angle $\alpha_{L=0}$.
5. How do α and $\alpha_{\text {aero }}$ differ? (1 student)

See the figure. α is the angle of the freestream velocity relative to the reference line, and is one number for the whole wing. $\alpha_{\text {aero }}(y)$ is the angle of the local zero-lift line relative to the reference line, and can vary along the span.
6. How do you change the load distribution for an elliptical wing? (1 student) During design, you can adjust $\alpha_{\text {geom }}(y)$. Once the wing is built and $\alpha_{\text {geom }}(y)$ is fixed, you can do it by deflecting flaps or ailerons.
7. Is there a reference line to make calculations simpler? (1 student) You can set it to be the chord line of the center airfoil, so that $\alpha_{\text {geom }}(0)=0$. But that's a very minor simplification.
8. How much twist will occur in an actual wing? (1 student)

A wing which needs a wide speed range (or wide C_{L} range to be more precise), wants to have minimal twist. A wing which always operates at the same C_{L} can possibly have a lot of twist with no drawbacks. We'll go over this in class at some point.
9. Which equations should we know? There are so many! (1 student)

You should know and understand concepts. This is not the same as "knowing" (or memorizing) equations.
10. In PRS 2, if you change $c(y)$, then $c_{\ell}(y)$ will change, and equation (2) indicates $\alpha_{i}(y)$ will change. Right? (1 student)
Not really. Note that equation (3) completely determines $\alpha_{i}(y)$ if $\Gamma(y)$ is given. Equation (2) then in effect determines $\alpha_{\text {aero }}(y)$.
11. No mud (5 students)

