
F13 – Lecture Notes 
1. Bernoulli Equation 

2. Venturi Flow 

Reading: Anderson 3.2, 3.3 

Bernoulli Equation 
Derivation – 1-D case 
The 1-D momentum equation, which is Newton’s Second Law applied to fluid flow, is written 
as follows. 

�u �u �p 
� + �u = − + �gx + 

�t �x �x 

We now make the following assumptions about the flow. 

• Steady flow: �/�t = 0 

• Negligible gravity: �gx � 0 

• Negligible viscous forces: (F x)viscous � 0 

• Low-speed flow: � is constant 

(F x)viscous 

These reduce the momentum equation to the following simpler form, which can be immedi
ately integrated. 

du dp
�u + = 0 

dx dx 
1 d(u2) dp

� + = 0 
2 dx dx 

1 
� u 2 + p = constant � po

2 

p

The final result is the one-dimensional Bernoulli Equation, which uniquely relates velocity 
and pressure if the simplifying assumptions listed above are valid. The constant of integration 

o is called the stagnation pressure, or equivalently the total pressure, and is typically set by 
known upstream conditions. 

Derivation – 2-D case 
The 2-D momentum equations are 

�u �u �u �p 
� + �u + �v = − + �gx + (F x)viscous

�t �x �y �x 
�v �v �v �p 

� + �u + �v = − + �gy + (F y )viscous
�t �x �y �y 

Making the same assumptions as before, these simplify to the following. 

�u �u �p 
�u + �v + = 0 (1)

�x �y �x 
�v �v �p 

�u + �v + = 0 (2)
�x �y �y 
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Before these can be integrated, we must first restrict ourselves only to flowfield variations 
along a streamline. Consider an incremental distance ds along the streamline, with projec
tions dx and dy in the two axis directions. The speed V likewise has projections u and 
v. 

y	 p + dp 

dx 

dy 

u 

v 

p 
u 
v 

u + du 
v + dv V 

streamline
 

x 
Along the streamline, we have 

dy v 
= 

dx u 
or 

u dy = v dx (3) 

We multiply the x-momentum equation (1) by dx, use relation (3) to replace v dx by u dy, 
and combine the u-derivative terms into a du differential. 

�u �u �p 
�u dx + �v dx + dx = 0 

�x �y �x 
�u �u	 �p 

�u dx + dy + dx = 0 
�x �y	 �x 

�p 
�u du + dx =	 0 

�x 
� 
 �p 1 

� d u 2 + dx = 0	 (4)
2 �x 

We multiply the y-momentum equation (2) by dy, and performing a similar manipulation, 
we get 

�v �v �p 
�u dy + �v dy + dy = 0 

�x �y �y 
�v �v �p 

�v dx + dy + dy = 0 
�x �y	 �y 

�p 
�v dv + dy =	 0 

�y 
� 
 �p 1 

� d v 2 + dy = 0	 (5)
2 �y 

Finally, we add equations (4) and (5), giving 

1 � 
 �p �p 
2� d u 2 + v + dx + dy = 0 

2	 �x �y 
1 
� d u 2 + v 2 + dp	 = 0 

2 
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which integrates into the general Bernoulli equation


1 
� V 2 + p = constant � po (along a streamline) (6)

2 

where V 2 = u2 + v2 is the square of the speed. For the 3-D case the final result is exactly 
the same as equation (6), but now the w velocity component is nonzero, and hence V 2 = 

2 2u + v2 + w . 

Irrotational Flow 
Because of the assumptions used in the derivations above, in particular the streamline rela
tion (3), the Bernoulli Equation (6) relates p and V only along any given streamline. Different 
streamlines will in general have different po constants, so p and V cannot be directly related 
between streamlines. For example, the simple shear flow on the left of the figure has parallel 
flow with a linear u(y), and a uniform pressure p. Its po distribution is therefore parabolic 
as shown. Hence, there is no unique correspondence between velocity and pressure in such 
a flow. 

y y 

po po 

Rotational flow Irrotational flow 

However, if the flow is irrotational, i.e. if ∂V = �� and V 2 = |��|2, then po takes on the 
same value for all streamlines, and the Bernoulli Equation (6) becomes usable to relate p and 
V in the entire irrotational flowfield. Fortunately, a flowfield is irrotational if the upstream 
flow is irrotational (e.g. uniform), which is a very common occurance in aerodynamics. The 
right side of the figure shows an example. Here, if the velocity is known at any point, the 
pressure is known as well. 

Use of Bernoulli Equation – Solving potential flows 
Having the Bernoulli Equantion (6) in hand allows us to devise a relatively simple two-step 
solution strategy for potential flows. 

1. Determine the potential field �(x, y, z) and resulting velocity field ∂V = �� using the 
governing equations. 

2. Once the velocity field is known, insert it into the Bernoulli Equation to compute the 
pressure field p(x, y, z). 

This two-step process is simple enough to permit very economical aerodynamic solution 
methods which give a great deal of physical insight into aerodynamic behavior. The alter
native approaches which do not rely on Bernoulli Equation must solve for ∂V (x, y, z) and 
p(x, y, z) simultaneously, which is a tremendously more difficult problem which can be ap
proached only through brute force numerical computation. 
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Venturi Flow 
One common application of the Bernoulli Equation is in a venturi , which is a flow tube with 
a minimum cross-sectional area somewhere in the middle. 

A1 A2 

V1V 2 
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p 
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p 
p
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p
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A

Assuming incompressible flow, with � constant, the mass conservation equation gives 

A1V1 = A2V2 (7) 

This relates V1 and V2 in terms of the geometric cross-sectional areas. 

1
V2 = V1 

A2 

Knowing the velocity relationship, the Bernoulli Equation then gives the pressure relation
ship. 

1 1 
p1 + �V

1

2 = po = p2 + �V
2

2 (8)
2 2 

Equations (7) and (8) together can be used to determine the inlet velocity V1, knowing only 
the pressure difference p1 − p2 and the geometric areas. By direct substution we have 

� 2(p1 − p2)
V1 = 

� [(A1/A2)2 − 1] 

A venturi can therefore by used as an airspeed indicator , if some means of measuring the 
pressure difference p1 − p2 is provided. 
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