
Introduction 

How efficient is an algorithm or piece of code? Efficiency covers lots of resources, 
including: 

• 	 CPU (time) usage  
• 	 memory usage 
• 	 disk usage 
• 	 network usage 

All are important but we will mostly talk about time complexity (CPU usage). 

Be careful to differentiate between: 

1. 	 Performance: how much time/memory/disk/... is actually used when a program is 
run. This depends on the machine, compiler, etc. as well as the code.  

2. 	 Complexity: how do the resource requirements of a program or algorithm scale, 
i.e., what happens as the size of the problem being solved gets larger? 

Complexity affects performance but not the other way around.  

The time required by a function/procedure is proportional to the number of "basic 
operations" that it performs. Here are some examples of basic operations:  

• 	 one arithmetic operation (e.g., +, *).  
• 	 one assignment (e.g. x := 0) 
• 	 one test (e.g., x = 0) 
• 	 one read (of a primitive type: integer, float, character, boolean) 
• 	 one write (of a primitive type: integer, float, character, boolean)  

Some functions/procedures perform the same number of operations every time they are 
called. For example, StackSize in the Stack implementation always returns the number of 
elements currently in the stack or states that the stack is empty, then we say that 
StackSize takes constant time. 

Other functions/ procedures may perform different numbers of operations, depending on 
the value of a parameter. For example, in the BubbleSort algorithm, the number of 
elements in the array, determines the number of operations performed by the algorithm. 
This parameter (number of elements) is called the problem size/ input size. 

When we are trying to find the complexity of the function/ procedure/ algorithm/ 
program, we are not interested in the exact number of operations that are being 
performed. Instead, we are interested in the relation of the number of operations to the 
problem size. 



Typically, we are usually interested in the worst case: what is the maximum number of 
operations that might be performed for a given problem size. For example, inserting an 
element into an array, we have to move the current element and all of the elements that 
come after it one place to the right in the array. In the worst case, inserting at the 
beginning of the array, all of the elements in the array must be moved. Therefore, in the 
worst case, the time for insertion is proportional to the number of elements in the array, 
and we say that the worst-case time for the insertion operation is linear in the number of 
elements in the array. For a linear-time algorithm, if the problem size doubles, the 
number of operations also doubles. 

Big-O notation 

We express complexity using big-O notation. 

For a problem of size N:  

� a constant-time algorithm is "order 1": O(1)  
� a linear-time algorithm is "order N": O(N)  
� a quadratic-time algorithm is "order N squared": O(N2) 

Note that the big-O expressions do not have constants or low-order terms. This is 
because, when N gets large enough, constants and low-order terms don't matter (a 
constant-time algorithm will be faster than a linear-time algorithm, which will be faster 
than a quadratic-time algorithm). 

Formal definition:  

A function T(N) is O(F(N)) if for some constant c and for values of N greater than some 
value n0: 

T(N) <= c * F(N) 

The idea is that T(N) is the exact complexity of a procedure/function/algorithm as a 
function of the problem size N, and that F(N) is an upper-bound on that complexity (i.e., 
the actual time/space or whatever for a problem of size N will be no worse than F(N)).  

In practice, we want the smallest F(N) -- the least upper bound on the actual complexity.  
For example, consider: 

T(N) = 3 * N2 + 5. 

We can show that T(N) is O(N2) by choosing c = 4 and n0 = 2. 

This is because for all values of N greater than 2: 

3 * N2 + 5 <= 4 * N2 



T(N) is not O(N), because whatever constant c and value n0 you choose, There is always 
a value of N > n0 such that (3 * N2 + 5) > (c * N) 

Determining Complexity 

In general, how can you determine the running time of a piece of code? The answer is 
that it depends on what kinds of statements are used.  

Sequence of statements 

statement 1; 

statement 2; 

... 


statement k; 


The total time is found by adding the times for all statements:  

total time = time(statement 1) + time(statement 2) + ... + time(statement k) 

If each statement is "simple" (only involves basic operations) then the time for each 
statement is constant and the total time is also constant: O(1).  

If-Then-Else 

if (cond) then 
block 1 (sequence of statements) 


else 

block 2 (sequence of statements) 


end if; 


Here, either block 1 will execute, or block 2 will execute. Therefore, the worst-case time 
is the slower of the two possibilities: 

max(time(block 1), time(block 2)) 

If block 1 takes O(1) and block 2 takes O(N), the if-then-else statement would be O(N).  

Loops 

for I in 1 .. N loop 
sequence of statements 


end loop; 


The loop executes N times, so the sequence of statements also executes N times. If we 
assume the statements are O(1), the total time for the for loop is N * O(1), which is O(N) 
overall. 



Nested loops 

for I in 1 .. N loop 

for J in 1 .. M loop 


sequence of statements 

end loop; 


end loop; 


The outer loop executes N times. Every time the outer loop executes, the inner loop 
executes M times. As a result, the statements in the inner loop execute a total of N * M 
times. Thus, the complexity is O(N * M).  

In a common special case where the stopping condition of the inner loop is J < N instead 
of J < M (i.e., the inner loop also executes N times), the total complexity for the two loops 
is O(N2). 

Statements with function/ procedure calls 

When a statement involves a function/ procedure call, the complexity of the statement 
includes the complexity of the function/ procedure. Assume that you know that function/ 
procedure f takes constant time, and that function/procedure g takes time proportional to 
(linear in) the value of its parameter k. Then the statements below have the time 
complexities indicated.  

f(k) has O(1) 
g(k) has O(k) 

When a loop is involved, the same rule applies. For example:  

for J in 1 .. N loop 

g(J); 


end loop;


has complexity (N2). The loop executes N times and each function/procedure call g(N) is 
complexity O(N). 



Recurrence Equations 

A recurrence equation is just a recursive function definition. It defines a function on an 

input in terms of its values on smaller inputs. 


Recurrence equations are used to characterize the running time of algorithms. T(n) 

typically stands for the running time (usually worst case) of a given algorithm on an input 

of size n. 


We refer to algorithms that define a function in terms of itself but with a smaller input 

space as divide and conquer algorithms.  


Recurrence equations for divide and conquer algorithms typically have the form: 


General case (n ≥ 1): 

T(n) = [number of partitions] T (size of each partition) + cost of dividing and gluing 


Base case (n ≤ 0) 


Techniques for solving Recurrences: 


1. Recursion-Tree method 
a. Construct the tree by unwinding the recurrence equation. 
b. Determine the entire cost of the tree by summing the cost of the nodes. 

2. Iteration 
3. Master Theorem 



Example 1: T(n) = T(n - 1) + 1 
Substitute T(n - 1) = T(n - 2) + 1, T(n - 2) = T(n - 3) + 1 ….. 

What does the recursion tree look like? 

What is the total cost? 

Example 2: T(n) = T(n - 1) + n 

Substitute: T(n - 1) = T(n - 2) + (n - 1), T(n - 2) = T(n - 3) + (n - 2), …. 

The Recursion Tree: 

Cost = 1 + 2+ … + n which is an arithmetic series. 



Note: A series is arithmetic if ak = c + ak-1, it can be computed using a formula 

Example 3: T(n) = T(n/2) + 1 

Substitute: T(n/2) = T(n/4) + 1, T(n /4) = T(n/8) + 1, …. 

The recursion tree is 

Example 4: T(n) = 2T(n/2) + n 

Substitute: T(n/2) = 2T(n/4) + n/2, T(n/4) = 2T(n/8) + n/4, …. 



------------------------------------------------------------------------------------------- 

Example 5: T(n) = 2T(n/2) + 1 

Substitute: T(n/2) = 2T(n/4) + 1, T(n/4) = 2T(n/8) + 1, …. 

Total cost = number of nodes 
= sum of nodes at each level 
= 1 + 2 + 4 + 8 + ... + 2lg(n) {Geometric series!} 

lg(n) 

= ∑ 2κ


 k=0 


Note: A series is geometric if it has the form ak = c. ak-1 

n 
∑ a0ck	 nLet S(n) = = a0 + a0 c + a0 c2 + a0 c3 + ... + a0 c
k =0 

n+1cS(n) = a0 c + a0 c2 + a0 c3 + ... + a0 cn+ a0 c
n– S(n) = a0 + a0 c + a0 c2 + a0 c3 + ... + a0 c

n+1(c – 1) S(n) = a0 c  – a0 = a0(cn+1 – 1) 

⇒	 S(n) = a0(cn+1 – 1)
 c –1 

If 0 < c < 1 and n →∞, the above formula can be rewritten as: 

Lim S (n) = . a0 . 0 < c < 1 
n →∞ 1 − c 



Example 6: T(n) = T(n/2) + n 

Substitute: T(n/2) = T(n/4) + n/2, T(n/4) = T(n/8) + n/4, …. 

What is the formula? 

Consider the recurrence equation 

⎧ c n = 1 
n T ) = ⎪( ⎨ 2T ⎜⎛ n 

⎟
⎞ + c n > 1

⎪⎩ ⎝ 2 ⎠ 

T(n) 	 = 2T(n/2) + c 
= 2(2T(n/2/2) + c) + c 
= 22T(n/22) + 2c + c 
= 22(2T(n/22/2) + c) + 3c 
= 23T(n/23) + 4c + 3c 
= 23T(n/23) + 7c 
= 23(2T(n/23/2) + c) + 7c 
= 24T(n/24) + 15c 
… 
= 2kT(n/2k) + (2k - 1)c 



k + 1k k − 1a a a ( b a ) − 1 
= Θ(( b a ) k )+ + L + + 1 = 

b k − 1bk b ( b a ) − 1


Consider the recurrence equation 


⎧ c n = 1

n T ) = ⎪
( ⎨ aT ⎛⎜ 

n ⎞
⎟ + cn n > 1

⎪⎩ ⎝ b ⎠ 

T(n) 	 = aT(n/b) + cn 
= a(aT(n/b/b) + cn/b) + cn 
= a2T(n/b2) + cna/b + cn 
= a2T(n/b2) + cn(a/b + 1) 
= a2(aT(n/b2/b) + cn/b2) + cn(a/b + 1) 
= a3T(n/b3) + cn(a2/b2) + cn(a/b + 1) 
= a3T(n/b3) + cn(a2/b2 + a/b + 1) 
… 
= akT(n/bk) + cn(ak-1/bk-1 + ak-2/bk-2 + … + a2/b2 + a/b + 1) 

if k = logb n, then n = bk 

Why? 

T(n) = cn(ak/bk + ... + a2/b2 + a/b + 1) 

If a = b, then the equation becomes cn (k+1) = cnlog(n) + cn = O(n log n) 

Note again : S(xk + xk-1 + … + x + 1) = (xk+1 -1)/(x-1)


If a< b then 


k + 1 k + 1k k − 1a a a ( b a ) − 1 1 − ( b a ) 1
+ + L + + 1 = = 

b k − 1bk b ( b a ) − 1 1 − ( b a ) < 
1 − b a 

T(n) = cn ·Q(1) = Q(n) 


If a > b, then 


k + 1k k − 1a a a ( b a ) − 1 
= Θ(( b a ) k )+ + L + + 1 = 

b k − 1bk b ( b a ) − 1 



Note: alog n = nlog a 

T(n) 	 = cn · Θ(ak / bk) 
= cn · Θ(alog n / blog n) 
= cn · Θ(alog n / n) 

Putting all three results together 

⎧ Θ(n ) a < b


( ⎪
n T ) = ⎨Θ(n log n ) a = bb

logb a )
⎪ Θ(n a > b⎩ 

This is a specific instance of the master theorem. The simple but more generic version of 
the master theorem was presented in class.  
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