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Fluids – Lecture 20 Notes 

1. Laval Nozzle Flows 

Reading: Anderson 10.3 

Laval Nozzle Flows 

Subsonic flow and choking 

Consider a duct with a throat, connected at its inlet to a very large still air reservoir with 
total pressure and enthalpy pr, hr. The duct exit is now subjected to an adjustable exit 
static pressure pe, sometimes also called the back pressure. As pe is gradually reduced from 
pr, air will flow from the reservoir to the exit with a mass flow ṁ. We first note that the 
stagnation conditions are known from the reservoir values all along the duct. 

γpo γpr2 po = pr , a = (γ−1)ho = (γ−1)hr , ρo = = o (γ−1)ho (γ−1)hr 

If we assume isentropic flow, ṁ can be computed with the isentropic relations applied at the 
exit, using the known exit pressure pe and known exit area Ae. 
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The observed relation between pe and ṁ is shown on the bottom right in the figure. As pe 

is reduced, ṁ will first increase, but at some point it will level off and remain constant even 
if pe is reduced all the way to zero (vacuum). When ṁ no longer increases with a reduction 
in pe, the duct is said to be choked . 
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If we examine the various flow properties along the duct, it is evident that the onset of

choking cooincides with the throat reaching M = 1 locally. This also corresponds to the
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∗mass flux ρu at the throat reaching its maximum possible value ρ∗ a , which is given by 

ρ
γ+1 

∗ a ∗ γpr γ−1 2(γ−1) 
� �

− 

∗ 

ρ
ρ∗ a = ρoao = � 1 + (2) 

o ao (γ−1)hr 
2 

Therefore, the only way to change the mass flow of a choked duct is to change the reservoir’s 
total properties pr and/or hr. 

Choked flow with normal shock 

When the back pressure is reduced below the level required to reach choking, a new flow 
pattern emerges, called a Laval nozzle flow , with the following important features: 

1. The flow upstream of the throat no longer changes with pe, but remains the same as at 
the choking-onset condition. This is consistent with the mass flow being fixed. 

2. The flow behind the throat becomes supersonic. The Mach number continues to increase 
and pressure to decrease as the area increases downstream. 

3. A normal shock forms in the duct, and the flow behind the shock returns to subsonic. 
The Mach number then decreases and pressure increases towards pe as the area increases. 

4. The shock incurs a total pressure loss, so that po < pr behind the shock all the way to the 
exit. Both p(x) and M(x) behind the shock are then lower than what they would be with 
isentropic flow at the onset of choking. 
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Supersonic-exit flows 

With sufficiently low back pressure, the shock can be moved back to nearly the exit plane. 
∗If the back pressure is reduced further, below the sonic pressure p , the exit flow becomes 

supersonic, leading to three possible types of exit flow. In these cases it is necessary to 
distinguish between the exit pressure pe of the duct flow, and the back pressure pB of the 
surrounding air, since these two pressures will in general no longer be the same. 

∗Overexpanded nozzle flow. In this case, pB < p , so the exit flow is supersonic, but pB > pe, 
so the flow must adjust to a higher pressure. This is done through oblique shocks attached 
to the duct nozzle edges. The streamline at the edge of the jet behaves much like a solid 
wall, whose turning angle adjusts itself so that the post-shock pressure is equal to pB. 
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Matched nozzle flow. In this case, the back pressure is reduced further until pB = pe. The 
duct nozzle flow comes out at the same pressure as the surrounding air, and hence no turning 
takes place. 
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Underexpanded nozzle flow. In this case, the back pressure is reduced below the isentropic 
exit pressure, so that pB < pe. The duct nozzle flow must now expand to reach pB, which is 
done through expansion fans attached to the duct nozzle edges. 

Jet shock diamonds 

In the underexpanded and overexpanded nozzle flows, each initial oblique shock or expansion 
fan impinges on the opposite edge of the jet, turning the flow away or towards the centerline. 
The shock or expansion fan reflects off the edge, and propagates back to the other side, 
repeating the cycle until the jet dissipates though mixing. These flow patterns are known as 
shock diamonds, which are often visible in the exhaust of rocket or jet engines. 

Determination of Choked Nozzle Flows 

A common flow problem is to determine the exit conditions and losses of a given choked 
nozzle with prescribed reservoir stagnation conditions pr, hr, and a prescribed exit pressure 
pe. We first note that the mass flow in this situation is known, and given by combining 
relation (2) with the fact that A∗ = At for a choked throat. 
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To then determine the exit conditions corresponding to this mass flow, we use the mass flow 
expression (1), but recast it in terms of the (known) exit static pressure rather than the 
(unknown) exit total pressure. We can also set ho = hr for adiabatic flow. 
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Equating (3) and (4), and squaring the result, gives 
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This is a quadratic equation for Me 
2, which can be solved with a specified righthand side. 

The exit total pressure is then obtained via its definition. 
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The overall nozzle total pressure ratio poe/pr is due to the loss across the shock, so that 
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p
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where f(M1) is the shock total pressure ratio function, also available in tabulated form. 
Equation (6) therefore implicitly determines M1 just in front of the shock, which together 
with the universal flow area function A/A∗ = f(M) determines the nozzle area at the shock. 
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