The velocity field \vec{V} about the airfoil is represented as a superposition of a freestream and a vortex sheet.

I feel the following about this concept.

1. Very uncertain
2. Somewhat uncertain
3. Somewhat comfortable
4. Very comfortable

The circulation of $\overrightarrow{\mathrm{V}}_{\mathbf{1}}(\mathrm{x}, \mathrm{y})$ about the circuit of perimeter $s_{t o t}$ is Γ_{1}.
A constant $\Delta \vec{V}$ is now added to make $\overrightarrow{\mathrm{V}}_{2}=\overrightarrow{\mathrm{V}}_{1}+\Delta \overrightarrow{\mathrm{V}}$.

What is $\overrightarrow{\mathrm{V}}_{2}$'s circulation Γ_{2} about the same circuit?

1. $\Gamma_{2}=\Gamma_{1}-|\Delta \vec{V}| \mathrm{s}_{\mathrm{tot}}$
2. ${ }^{*} \Gamma_{2}=\Gamma_{1}$
3. $\Gamma_{2}=\Gamma_{1}+|\Delta \overrightarrow{\mathrm{V}}| \mathrm{s}_{\text {tot }}$

An airfoil in steady motion at speed V_{1} has circulation Γ_{1}.
The speed is suddenly increased to $\mathrm{V}_{2}=2 \mathrm{~V}_{1}$.

What is the circulation Γ_{v} of the shed vortex?

1. $\Gamma_{\mathrm{v}}=-\Gamma_{1} / 2$
2. ${ }^{*} \Gamma_{\mathrm{v}}=-\Gamma_{1}$
3. $\Gamma_{\mathrm{v}}=-2 \Gamma_{1}$

Initial steady motion
After velocity increase

A vortex sheet is γ placed on the x axis in a freestream V_{∞}. The average x-velocity $\left(\overrightarrow{\mathbf{V}}_{\mathbf{u}}+\overrightarrow{\mathbf{V}}_{\ell}\right) \cdot \hat{\imath} / 2$ on the sheet itself, will

1. Increase
2. Decrease
3.* Not change

Which type of control surface deflection will cause the largest change in the magnitude of the zero-lift angle?

1. A
2.* B
2. It will be the same for A and B

A

$1-0.3 \mathrm{c}=\mid$
B

A wing has nearly-uniform circulation $\Gamma(y)$ over the span. What is the associated vortex sheet strength $\gamma(y)$?

4.*

A wing has nearly-uniform circulation $\Gamma(y)$ over the span. What is the associated downwash $w(y)$?

4.*

Two wings are operating at the same velocity and lift. Wing B has doubled chords compared to wing A. How do their D_{i} 's compare?

1. $\left(\mathbf{D}_{\mathbf{i}}\right)_{\mathbf{A}}>\left(\mathbf{D}_{\mathbf{i}}\right)_{\mathbf{B}}$
2.* $\left(\mathbf{D}_{\mathbf{i}}\right)_{\mathrm{A}}=\left(\mathrm{D}_{\mathbf{i}}\right)_{\mathrm{B}}$
2. $\left(\mathbf{D}_{\mathbf{i}}\right)_{\mathrm{A}}<\left(\mathbf{D}_{\mathbf{i}}\right)_{\mathrm{B}}$

A

B

Two wings with the same area are oprating at the same velocity and lift. Wing A has a 5% larger span. How do their C_{Di} 's compare?
1.* $\left(\mathrm{C}_{\mathrm{Di}}\right)_{\mathrm{A}} \simeq 0.90\left(\mathrm{C}_{\mathrm{Di}}\right)_{\mathrm{B}}$
2. $\left(\mathrm{C}_{\mathrm{Di}}\right)_{\mathrm{A}} \simeq 0.95\left(\mathrm{C}_{\mathrm{Di}}\right)_{\mathrm{B}}$
3. $\left(\mathrm{C}_{\mathrm{Di}}\right)_{\mathrm{A}} \simeq\left(\mathrm{C}_{\mathrm{Di}}\right)_{\mathrm{B}}$

A

B

To design a wing with an elliptic load distribution at a given V_{∞} and b , which variable is NOT in our power to manipulate?

1. $\alpha_{\text {geom }}(\mathbf{y})$ geometric twist
2. $\alpha_{\mathrm{L}=0}(\mathrm{y})$ zero-lift angle
3. ${ }^{*} \alpha_{i}(y)$ induced angle
4. $\mathrm{c}(\mathrm{y})$ chord
5. $\mathbf{c}_{\ell}(\mathbf{y})$ lift coefficient
6. They can all be manipulated
7. Not sure

In our elliptic-loaded wing design example, we increase the constant chord by 10%. What will NOT change in our wing?

1. $\alpha_{\text {geom }}(\mathbf{y})$ geometric twist
2.* $\alpha_{i}(\mathbf{y}) \quad$ induced angle
2. $\mathbf{c}_{\ell}(\mathbf{y})$ lift coefficient
3. Not sure

A wing with a non-elliptic loading has $e=0.900$ ($\delta \simeq 0.10$). The deviation from elliptic loading is halved. What is the new e ?

1. 0.900
2. 0.925
3. 0.950
4.* 0.975
4. Not sure

For a particular aircraft, changing the aspect ratio by $+10 \%$ changes $C_{L}^{3 / 2} / C_{D}$ by $+8 \%$, but also changes total weight by $+6 \%$. To reduce flight power, the aspect ratio should be

1. Increased

2.* Decreased
3. Not sure

