The velocity field \vec{V} about the airfoil is represented as a superposition of a freestream and a vortex sheet.

I feel the following about this concept.

- 1. Very uncertain
- 2. Somewhat uncertain
- 3. Somewhat comfortable
- 4. Very comfortable

The circulation of $\vec{V}_1(x, y)$ about the circuit of perimeter s_{tot} is Γ_1 .

A constant $\Delta \vec{V}$ is now added to make $\vec{V}_2 = \vec{V}_1 + \Delta \vec{V}$.

What is \vec{V}_2 's circulation Γ_2 about the same circuit?

1.
$$\Gamma_2 = \Gamma_1 - |\Delta \vec{\mathbf{V}}| \mathbf{s}_{\text{tot}}$$

2.* $\Gamma_2 = \Gamma_1$
3. $\Gamma_2 = \Gamma_1 + |\Delta \vec{\mathbf{V}}| \mathbf{s}_{\text{tot}}$

An airfoil in steady motion at speed V_1 has circulation Γ_1 . The speed is suddenly increased to $V_2 = 2V_1$.

What is the circulation $\Gamma_{\rm v}$ of the shed vortex?

1. $\Gamma_{
m v}=-\Gamma_1/2$

$$2.* \,\, \Gamma_{\rm v} = -\Gamma_1$$

3.
$$\Gamma_{\rm V} = -2\Gamma_1$$

Initial steady motion

After velocity increase

A vortex sheet is γ placed on the x axis in a freestream V_{∞} . The average x-velocity $(\vec{V}_u + \vec{V}_\ell) \cdot \hat{\imath} / 2$ on the sheet itself, will

- 1. Increase
- 2. Decrease
- 3.* Not change

Which type of control surface deflection will cause the largest change in the magnitude of the zero-lift angle?

- 1. A
- 2.* B

3. It will be the same for A and B

A wing has nearly-uniform circulation $\Gamma(y)$ over the span. What is the associated vortex sheet strength $\gamma(y)$?

4.*

A wing has nearly-uniform circulation $\Gamma(y)$ over the span. What is the associated downwash w(y)?

4.*

Two wings are operating at the same velocity and lift. Wing B has doubled chords compared to wing A. How do their D_i 's compare?

1.
$$(D_i)_A > (D_i)_B$$

2.* $(D_i)_A = (D_i)_B$
3. $(D_i)_A < (D_i)_B$

Two wings with the same area are operating at the same velocity and lift. Wing A has a 5% larger span. How do their C_{Di} 's compare?

1.*
$$(C_{Di})_A \simeq 0.90 (C_{Di})_B$$

2. $(C_{Di})_A \simeq 0.95 (C_{Di})_B$

3.
$$(\mathbf{C_{Di}})_{\mathbf{A}} \simeq (\mathbf{C_{Di}})_{\mathbf{B}}$$

To design a wing with an elliptic load distribution at a given V_{∞} and b, which variable is NOT in our power to manipulate?

- **1.** $\alpha_{\text{geom}}(\mathbf{y})$ geometric twist
- 2. $\alpha_{L=0}(y)$ zero-lift angle
- **3.*** $\alpha_i(\mathbf{y})$ induced angle
- 4. $\mathbf{c}(\mathbf{y})$ chord
- 5. $c_{\ell}(y)$ lift coefficient
- 6. They can all be manipulated
- 7. Not sure

In our elliptic-loaded wing design example, we increase the constant chord by 10%. What will NOT change in our wing?

- **1.** $\alpha_{\text{geom}}(\mathbf{y})$ geometric twist
- 2.* $\alpha_i(\mathbf{y})$ induced angle
- 3. $c_{\ell}(y)$ lift coefficient
- 4. Not sure

A wing with a non-elliptic loading has e = 0.900 ($\delta \simeq 0.10$). The deviation from elliptic loading is halved. What is the new e?

- **1.** 0.900
- **2.** 0.925
- **3.** 0.950
- **4.*** 0.975
- 5. Not sure

For a particular aircraft, changing the aspect ratio by +10% changes $C_L^{3/2}/C_D$ by +8%, but also changes total weight by +6%. To reduce flight power, the aspect ratio should be

- 1. Increased
- 2.* Decreased
- 3. Not sure